A. 數學模型有哪些
數學模型(mathematical model)就是用數學的語言、方法去近似地刻畫實際,描述現實問題的數學公式、圖形或演算法。
數學模型可按不同的方式進行分類。
按照模型的應用領域,可分為人口模型、生物模型、生態模型、交通模型、環境模型、作戰模型、社會模型、經濟模型、醫學模型、機械模型等。
按照建立模型的數學方法,可分為微分方程模型、幾何模型、網路模型、運籌模型、隨機模型等。
按照建模目的,可分為描述模型、分析模型、預測模型、決策模型、控制模型等。
按照對模型結構的了解程度,可分為白箱模型、灰箱模型、黑箱模型。白箱是指對所涉及問題的機理很清楚,黑箱是完全不了解問題的內部機理,灰箱則介於兩者之間。
根據模型的表現形態還可分為:靜態模型和動態模型、解析模型和數值模型、離散模型和連續模型、確定性模型和隨機性模型。
數學模型和數學建模介紹
數學建模(mathematical modeling)就是通過建立數學模型來解決各種實際問題的方法,也就是通過對實際問題的抽象、簡化,確定變數和參數,並應用某些規律建立起變數、參數之間的關系。求解該數學問題,解釋、驗證所得到的解,從而確定能否用於解決實際問題。數學建模最重要的特點在於它是一個接受實踐檢驗、多次修改、逐漸完善的過程。
數學建模沒有固定的格式和標准,也沒有明確的方法,通常由明確問題、合理假設、搭建模型、求解模型、分析檢驗等五個步驟組成。
一個理想的數學模型,應盡可能滿足以下兩個條件:
模型的可靠性:在誤差允許范圍內,能正確反映客觀實際;
模型的可解性:模型能夠通過數學計算,得到可行解。
一個實際問題往往很復雜的,影響因素也有很多,要解決實際問題,就要將實際問題抽象簡化、合理假設,確定變數和參數,建立合適的數學模型,並求解。模型的可靠性和可解性通常互相矛盾,一般總是在模型可解性的前提下力爭較滿意的可靠性。
B. 預測模型可分為哪幾類
根據方法本身的性質特點將預測方法分為三類。
1、定性預測方法
根據人們對系統過去和現在的經驗、判斷和直覺進行預測,其中以人的邏輯判斷為主,僅要求提供系統發展的方向、狀態、形勢等定性結果。該方法適用於缺乏歷史統計數據的系統對象。
2、時間序列分析
根據系統對象隨時間變化的歷史資料,只考慮系統變數隨時間的變化規律,對系統未來的表現時間進行定量預測。主要包括移動平均法、指數平滑法、趨勢外推法等。該方法適於利用簡單統計數據預測研究對象隨時間變化的趨勢等。
3、因果關系預測
系統變數之間存在某種前因後果關系,找出影響某種結果的幾個因素,建立因與果之間的數學模型,根據因素變數的變化預測結果變數的變化,既預測系統發展的方向又確定具體的數值變化規律。
(2)什麼是銷售預測的數學模型擴展閱讀:
預測模型是在採用定量預測法進行預測時,最重要的工作是建立預測數學模型。預測模型是指用於預測的,用數學語言或公式所描述的事物間的數量關系。它在一定程度上揭示了事物間的內在規律性,預測時把它作為計算預測值的直接依據。
因此,它對預測准確度有極大的影響。任何一種具體的預測方法都是以其特定的數學模型為特徵。預測方法的種類很多,各有相應的預測模型。
趨勢外推預測方法是根據事物的歷史和現實數據,尋求事物隨時間推移而發展變化的規律,從而推測其未來狀況的一種常用的預測方法。
趨勢外推法的假設條件是:
(1)假設事物發展過程沒有跳躍式變化,即事物的發展變化是漸進型的。
(2)假設所研究系統的結構、功能等基本保持不變,即假定根據過去資料建立的趨勢外推模型能適合未來,能代表未來趨勢變化的情況。
由以上兩個假設條件可知,趨勢外推預測法是事物發展漸進過程的一種統計預測方法。簡言之,就是運用一個數學模型,擬合一條趨勢線,然後用這個模型外推預測未來時期事物的發展。
趨勢外推預測法主要利用描繪散點圖的方法(圖形識別)和差分法計算進行模型選擇。
主要優點是:可以揭示事物發展的未來,並定量地估價其功能特性。
趨勢外推預測法比較適合中、長期新產品預測,要求有至少5年的數據資料。
組合預測法是對同一個問題,採用多種預測方法。組合的主要目的是綜合利用各種方法所提供的信息,盡可能地提高預測精度。組合預測有 2 種基本形式,一是等權組合, 即各預測方法的預測值按相同的權數組合成新的預測值;二是不等權組合,即賦予不同預測方法的預測值不同的權數。
這 2 種形式的原理和運用方法完全相同,只是權數的取定有所區別。 根據經驗,採用不等權組合的組合預測法結果較為准確。
回歸預測方法是根據自變數和因變數之間的相關關系進行預測的。自變數的個數可以一個或多個,根據自變數的個數可分為一元回歸預測和多元回歸預測。同時根據自變數和因變數的相關關系,分為線性回歸預測方法和非線性回歸方法。
回歸問題的學習等價於函數擬合:選擇一條函數曲線使其很好的擬合已知數據且能很好的預測未知數據。
C. 什麼是數學模型
數學模型是針對參照某種事物系統的特徵或數量依存關系,採用數學語言,概括地或近似地表述出的一種數學結構,這種數學結構是藉助於數學符號刻劃出來的某種系統的純關系結構。從廣義理解,數學模型包括數學中的各種概念,各種公式和各種理論。因為它們都是由現實世界的原型抽象出來的,從這意義上講,整個數學也可以說是一門關於數學模型的科學。從狹義理解,數學模型只指那些反映了特定問題或特定的具體事物系統的數學關系結構,這個意義上也可理解為聯系一個系統中各變數間內的關系的數學表達。
數學模型所表達的內容可以是定量的,也可以是定性的,但必須以定量的方式體現出來。因此,數學模型法的操作方式偏向於定量形式。
建立數學模型的要求:
1、真實完整。
1)真實的、系統的、完整的反映客觀現象;
2)必須具有代表性;
3)具有外推性,即能得到原型客體的信息,在模型的研究實驗時,能得到關於原型客體的原因;
4)必須反映完成基本任務所達到的各種業績,而且要與實際情況相符合。
2、簡明實用。在建模過程中,要把本質的東西及其關系反映進去,把非本質的、對反映客觀真實程度影響不大的東西去掉,使模型在保證一定精確度的條件下,盡可能的簡單和可操作,數據易於採集。
3、適應變化。隨著有關條件的變化和人們認識的發展,通過相關變數及參數的調整,能很好的適應新情況。
數學模型的分類
1、 精確型:內涵和外延非常分明,可以用精確數學表達。
2、 模糊型:內涵和外延不是很清晰,要用模糊數學來描述。
數學模型的基本原則
1、簡化原則
現實世界的原型都是具有多因素、多變數、多層次的比較復雜的系統,對原型進行一定的簡化即抓住主要矛盾,數學模型應比原型簡化,數學模型自身也應是「最簡單」的。
2、可推導原則
由數學模型的研究可以推導出一些確定的結果,如果建立的數學模型在數學上是不可推導的,得不到確定的可以應用於原型的結果,這個數學模型就是無意義的。
3、反映性原則
數學模型實際上是人對現實世界的一種反映形式,因此數學模型和現實世界的原型就應有一定的「相似性」,抓住與原型相似的數學表達式或數學理論就是建立數學模型的關鍵性技巧。
D. 什麼是數學模型
模型是為了一定目的,對客觀事物的一部分進行簡縮、抽象、提煉出來的鎮睜悉原型的替代物,集中反映了原型中人們需要的那一部分特徵。
數學建模就是指對於一個現實對象,為了一個特定目的,根據其內在規律,作出必要的簡化假設,運用適當的數學工具,得到的一個數學結早褲構,其意義在於用數學方法解決實際問題。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作御乎表述來建立數學模型。
數學模型可以描述為:對於現實世界的一個特定對象,為了一個特定目的,根據特有的內在規律,做出一定的必要假設,然後運用恰當的數學工具得到的一個數學結構。
這樣,在一定抽象並且簡化的基礎之上得到的一個數學結構,也就是數學模型,可以幫助人們更加深刻地認識所研究的對象。
比方說,我們所研究的物理學,尤其是應用在工程上面的物理學,比如電路,理論力學,材料力學這些,就是對數學建模的一個很好直觀的例子。