① 初中數學考查哪幾種數學能力
邏輯思維能力,抽象概括能力,數型結合能力 ,運算能力,分類討論能力。
② 中學數學的四大基本能力是什麼
運算能力,邏輯思維能力,空間想像能力,分析問題與解決問題的能力.
③ 數學七大能力包括哪些
數學七大能力包括:抽象概括能力、空間想像能力、推理論證能力、運算求解能力、數據處理能力、應用意識、創新意識
具體釋義:
1、抽象概括能力
抽象是指舍棄事物非本質的屬性,揭示其本質屬性:概括是指把僅僅屬於某一類對象的共同屬性區分出來的思維過程。抽象和概括是相互聯系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎上得出某種觀點或某個結論。
抽象概括能力是對具體的、生動的實例,在抽象概括的過程中,發現研究對象的本質;從給定的大量信息材料中概括出一些結論,並能將其應用於解決問題或作出新的判斷。
2、空間想像能力
能根據條件作出正確的圖形,根據圖形想像出直觀形象;能正確地分析出圖形中基本元素及其相互關系;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地解釋揭示問題的本質。
空間想像能力是對空間形式的觀察、分析、抽象的能力,主要表現為識圖、畫圖和對圖像的想像能力。識圖是指觀察研究所給圖形中幾何元素之間的相互關系。
畫圖是指將文字語言和符號語言轉化為圖形語言 以及對圖形添加輔助圖形或對圖形進行各種變換。對圖形的想像主要包括有圖想圖和無圖想圖兩種,是空間想像能力高層次的標志。
3、推理論證能力
推理是思維的基本形式之一,它由前提和結論兩部分組成,論證是由已有的正確的前提到被論證的結論的一連串的推理過程,推理既包括演繹推理,也包括合情推理:論證方法及包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法。一般運用和情推理進行猜想,再運用演繹推理進行證明。
中學數學的推理論證能力是根據已知的事實和已獲得的正確數學命題,論證某一數學命題真實性的初步的推理能力。
4、運算求解能力
會根據法則、公式進行正確運算、變形和數據處理,能根據問題的條件尋找與設計合理、簡捷的運輸途徑,能根據要求對數據進行估計和近似運算。
運算求解能力是思維能力和運算技能的結合。運算包括對數學的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等。
運算能力包括分析運算條件、探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調整運算的能力。
5、數據處理能力
會收集、整理、分析數據,能從大量數據中抽取對研究問題有用的信息,並作出判斷。數據處理能力主要依據統計案例中的方法對數據進行整理、分析,並解決給定的實際問題。
6、應用意識
能綜合應用所學數學知識、思想和方法解決問題,包括解決在相關學科、生產、生活中簡單的數學問題;能理解對問題陳述的材料,並對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數學問題。
能應用相關的數學方法解決問題進而加以驗證,並能用數學語言正確地表達和說明。 應用的主要過程是依據現實生活背景,提煉相關的數量關系,將現實問題轉化為數學問題,構造數學模型,並加以解決。
7、創新意識
能發現問題、提出問題,綜合與靈活地應用所學的數學知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考,探究和研究,提出解決問題的思路,創造性地解決問題。
創新意識是理性思維的高層次表現,對數學問題的」觀察、猜測、抽象、概括、證明」,是發現問題和解決問題的重要途徑,對數學知識的遷移、組合、融會的程度越高,顯示出的創新意識越強。
(3)初中數學中技能有哪些擴展閱讀
數學思維與數學思維能力的培養:
1、數學思維概述數學思維:
指在數學活動中的思維,是人腦和數學對象(空間形式、數量關系、結構關系)交互作用並按照一定思維規律認識數學內容的內在理性活動。它既具有思維的一般性質,又有自己的特性。最主要的特性表現在其思維的材料和結果都是數學內容。
2、數學思維的分類:
集中思維與發散思維:集中思維是朝著一個目標、遵循單一的模式,求出歸一答案的思維,又稱為求同思維;發散思維則表現在解決問題時,能根據已提供的條件,利用已有的知識經驗,從多個方向、不同途徑去探索思考,以尋求新的解決問題和途徑和方法,發散思維又稱為求異思維。
再造性思維與創造性思維:再造性思維是指原有的經驗和已經掌握的解題方法、策略,在燈似的情境中直接解決問題的思維方式。創造性思維是指在強烈的創新意識的指導下,指導頭腦中已有的信息重新加工,產生具有進步意義的新設想、新方法的思維。
3、數學思維的一般方法:
觀察與實驗: 觀察:是受思維影響的,有目的、有計劃地通過視覺器官去認識事物、狀態及上線關系的一種主動活動。觀察是思維的窗口。實驗:是有目的、有控制地創設一些有利觀察對象,並對其衽觀察和研究的活動方式。
4、初步邏輯思維能力及其培養:
邏輯思維是數學思維的核心。邏輯思維是一種確定的、前後一貫的、有條有理的、有根有據的思維。 概念明確:概念是反映客觀事物本質屬性的一種思維方式。判斷准確:判斷是對某個事物的性質,現象作出肯定或否定的思維方式。
數學判斷是對數量關系和空間形式有所肯定或否定的一咱方式。表達數學判斷的語句又稱數學命題。判斷是由主概念、謂概念和聯系詞三部分組成。 推理符合邏輯:推理是由一個或幾個已知的判斷推出一個新判斷的形式。 推理分歸納推理、演繹推理和類比推理三種。
歸納推理(從特殊到一般);演繹推理(從一般到特殊);類比推理(從特殊到特殊)培養初步邏輯思維能力的基本途徑: 要挖掘教材中的智力因素,把培養思維能力貫穿於教學的全過程。要給學生提供足夠的材料。
要順著學生的思維,重視學習過程。 要重視數學語言的表述。初步形象思維能力及其培養形象思維:是依託對形象材料的意會,從而對事物作出有關理解的思維。 形象思維的基本形式是表象、直感和想像。
④ 初中數學有哪些內容
初中數學主要學習的內容有哪些,主要分為幾個模板?想知道的小夥伴看過來,下面由我為你精心准備了「初中數學有哪些內容」僅供參考,持續關注本站將可以持續獲取更多的資訊!
初中數學有哪些內容
初中的數學主要是分代數和幾何兩大部分,兩者在中考中所佔的比例,一般代數略大於幾何
代數主要有以下幾點:1,有理數的運算,主要講有理數的三級運算(加減乘除和乘方開方)在這里要注意數字和字母的符號意識,就是,不要受小學數字的影響,一看見字母就不會做題了.2,整式的三級運算,注意符號意識的培養,還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用.3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段.4,函數,會識別一次函數、二次函數、反比例函數的圖像,記住他們的特徵,要會根據條件來應用.尤其要注睜乎意二次函數,這是中考的重點和難點.
拓展閱讀:初中數學學習高效方法
1、課內與課後
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。 特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。
認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下櫻棗來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
2、突出重點精益求精
在考試大綱的要求中,對內容有理解,了解,知道三個層次的要求;對方法有掌,會(能)兩個層次的要求,一般地說脊早拆,要求理解的內容,要求掌握的方法,是考試的重點。在歷年考試中,這方面考題出現的概率較大;在同一份試卷中,這方面試題所
佔有的分數也較多。"猜題"的人,往往要在這方面下功夫。一般說來,也確能猜出幾分來。但遇到綜合題,這些題在主要內容中含有次要內容。這時,"猜題"便行不通了。
我們講的突出重點,不僅要在主要內容和方法上多下功夫,更重要的是要去尋找重點內容與次要內容間的聯系,以主帶次,用重點內容擔挈整個內容。主要內容理解透了,其它的內容和方法迎刃而解。即抓出主要內容不是放棄次要內容而孤立主
要內容,而是從分析各內容的聯系,從比較中自然地突出主要內容。