導航:首頁 > 數字科學 > 數學建模中數學理論有哪些

數學建模中數學理論有哪些

發布時間:2023-08-08 02:49:12

① 數學建模的思路是什麼

說就是把實際問題用數學語言抽象概括,從數學角度來反映或近似地反映實際問題,得出的關於實際問題的數學描述。其形式是多樣的,可以是方程(組)、不等式、函數、幾何圖形等等。

在數學建模中常用思想和方法:類比法、二分法、量綱分析法、差分法、變分法、圖論法、層次分析法、數據擬合法、回歸分析法、數學規劃、機理分析、排隊方法、對策方法、決策方法、模糊評判方法、時間序列方法、灰色理論方法、現代優化演算法。

模型准備

了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰准確。

根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。

② 數學建模需要哪些數學知識

數學分析,高等代數,概率統計。數學建模最主要的問題在知識點上無非是這幾塊:1、多元變數求最值問題,最終能夠將其轉化為拉格朗日乘子法;2、高維線性規劃,線性回歸問題,用線性代數的矩陣乘法來解決;3、有可能需要用到隨機過程的相關知識,以及應用大數定理,以及蒙特卡洛演算法,用概率統計為工具進行解決。

③ 數學建模涉及的內容或要求掌握那些知識

數學建模
數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。

我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。

數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。

數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在於概念的抽象性、邏輯的嚴密性,結論的明確性和體系的完整性,而且在於它應用的廣泛性,進入20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在即將進入21世紀的知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國或經濟和科技的後備走到了前沿。經濟發展的全球化、計算機的迅猛發展,數學理倫與方法的不斷擴充使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。

應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分析和解決問題。這就需要深厚扎實的數學基礎,敏銳的洞察力和想像力,對實際問題的濃厚興趣和廣博的知識面。數學建模是聯系數學與實際問題的橋梁,是數學在各個領械廣泛應用的媒介,是數學科學技術轉化的主要途徑,數學建模在科學技術發展中的重要作用越來越受到數學界和工程界的普遍重視,它已成為現代科技工作者必備的重要能力之。為了適應科學技術發展的需要和培養高質量、高層次科技人才,數學建模已經在大學教育中逐步開展,國內外越來越多的大學正在進行數學建模課程的教學和參加開放性的數學建模競賽,將數學建模教學和競賽作為高等院校的教學改革和培養高層次的科技人才的個重要方面,現在許多院校正在將數學建模與教學改革相結合,努力探索更有效的數學建模教學法和培養面向21世紀的人才的新思路,與我國高校的其它數學類課程相比,數學建模具有難度大、涉及面廣、形式靈活,對教師和學生要求高等特點,數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。為了改變過去以教師為中心、以課堂講授為主、以知識傳授為主的傳統教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分析和解決問題的全過程,提高他們分析問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力,使他們在以後的工作中能經常性地想到用數學去解決問題,提高他們盡量利用計算機軟體及當代高新科技成果的意識,能將數學、計算機有機地結合起來去解決實際問題。數學建模以學生為主,教師利用一些事先設計好問題啟發,引導學生主動查閱文獻資料和學習新知識,鼓勵學生 積極開展討論和辯論,培養學生主動探索,努力進取的學風,培養學生從事科研工作的初步能力,培養學生團結協作的精神、形成一個生動活潑的環境和氣氛,教學過程的重點是創造一個環境去誘導學生的學習慾望、培養他們的自學能力,增強他們的數學素質和創新能力,提高他們的數舉素質,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。接受參加數學建模競賽賽前培訓的同學大都需要學習諸如數理統計、最優化、圖論、微分方程、計算方法、神經網路、層次分析法、模糊數學,數學軟體包的使用等等「短課程」(或講座),用的學時不多,多數是啟發性的講一些基本的概念和方法,主要是靠同學們自己去學,充分調動同學們的積極性,充分發揮同學們的潛能。培訓中廣泛地採用的討論班方式,同學自己報告、討論、辯論,教師主要起質疑、答疑、輔導的作用,競賽中一定要使用計算機及相應的軟體,如Mathemathmatica,Matlab,Mapple,甚至排版軟體等。
數學建模的幾個過程:
模型准備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設:根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立:在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。(盡量用簡單的數學工具)
模型求解:利用獲取的數據資料,對模型的所有參數做出計算(估計)。
模型分析:對所得的結果進行數學上的分析。
模型檢驗:將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用:應用方式因問題的性質和建模的目的而異。

全國大學生數學建模競賽章程

(一九九七年十二月修訂)
第一條 總則

全國大學生數學建模競賽(以下簡稱競賽)是國家教委高教司和中國工業與
應用數學學會共同主辦的面向全國大學生的群眾性科技活動,目的在於激勵
學生學習數學的積極性,提高學生建立數學模型和運用計算機技術解決實際
問題的綜合能力,鼓勵廣大學生踴躍參加課外科技活動,開拓知識面,培養
創造精神及合作意識,推動大學數學教學體系、教學內容和方法的改革。

第二條 競賽內容

競賽題目一般來源於工程技術和管理科學等方面經過適當簡化加工的實際問題,
不要求參賽者預先掌握深入的專門知識,只需要學過普通高校的數學課程。題
目有較大的靈活性供參賽者發揮其創造能力。參賽者應根據題目要求,完成一
篇包括模型的假設、建立和求解、計算方法的設計和計算機實現、結果的分析
和檢驗、模型的改進等方面的論文(即答卷)。競賽評獎以假設的合理性、建
模的創造性、結果的正確性和文字表述的清晰程度為主要標准。
第三條 競賽形式、規則和紀律

1.全國統一競賽題目,採取通訊競賽方式,以相對集中的形式進行。
2.競賽一般在每年9月末的三天內舉行。
3.大學生以隊為單位參賽,每隊3人,專業不限。研究生不得參加。每隊可設一名指
導教師(或教師組),從事賽前輔導和參賽的組織工作,但在競賽期間必須迴避參
賽隊員,不得進行指導或參與討論,否則按違反紀律處理。
4.競賽期間參賽隊員可以使用各種圖書資料、計算機和軟體,在國際互聯網上瀏覽,
但不得與隊外任何人(包括在網上)討論。
5.
工作人員將密封的賽題按時啟封發給參賽隊員,參賽隊在規定時間內完成答卷,
並准時交卷。
6 .參賽院校應責成有關職能部門負責競賽的組織和紀律監督工作,保證本校競賽
的規范性和公正性。
第四條 組織形式
1.競賽由全國競賽組織委員會主持,負責每年發動報名、擬定賽題、組織全國優秀
答卷的復審和評獎、印製獲獎證書、舉辦全國頒獎儀式等。全國競賽組委會每屆
任期四年,其組成人員由國家教委高教司和中國工業與應用數學學會負責確定。
2.競賽分賽區組織進行。原則上一個省(自治區、直轄市)為一個賽區,每個賽區
應至少有6所院校的20個隊參加(每所院校至多10個隊)。鄰近的省可以合並成立
一個賽區。每個賽區建立組織委員會,負責本賽區的宣傳發動及報名、監督競賽紀
律和組織評閱答卷等工作。組委會成員由各省(自治區、直轄市)教委、工業與應
用數學學會的同志及有關人士組成(沒有成立地方學會的,由各地教委與全國競賽
組委會指定的院校協商確定),報全國競賽組委會備案,並保持相對穩定。未成立
賽區的各省院校的參賽隊可直接向全國競賽組委會報名參賽。
3.設立組織工作優秀獎,表彰在競賽組織工作中成績優異或進步突出的賽區組委會,
以參賽(相對)校數和(絕對)隊數、征題的數量和質量、無違紀現象、以及與
全國組委會的配合等為主要標准。
第五條 評獎辦法
1.各賽區組委會聘請專家組成評閱委員會,評選本賽區的一等、二等獎(也可增設三等獎),
獲獎比例一般不超過三分之一,其餘凡完成合格答卷者獲得成功參賽獎。
2.各賽區組委會按規定的比例將本賽區的優秀答卷送全國競賽組委會。全國競賽組委
會聘請專家組成全國評委會,按統一標准從各賽區送交的優秀答卷中評選出全國一等、
二等獎,獲獎比例為全國參賽隊數的百分之十左右。
3.全國與各賽區的一、二等獎均頒發獲獎證書。競賽成績記入學生檔案,對成績優秀的參
賽學生,各院校在評優秀生、獎學金及報考(或免試直升)研究生時應予以適當考慮。
對指導教師的辛勤努力應予以表彰。
4.參賽隊的指導教師一律不得參加本賽區及全國的評閱和決定獲獎名次的工作。
5.對違反競賽規則的參賽隊,一經發現,取消參賽資格,成績無效。對所在院校要予以
警告、通報,直至取消該校下一年度參賽資格。對違反評閱答卷和評獎工作規定的賽區,
全國競賽組委會不承認其評獎結果。
6.設立異議期制度,具體內容見《全國大學生數學建模競賽異議期制度的若干規定》。
第六條 經費
1.參賽隊向各賽區組委會交納報名費。
2.賽區組委會向全國組委會交納一定數額的經費。
3.各級教育管理部門的資助。

http://mcm.ustc.e.cn/
http://www.shumo.com/home/

④ 數學模型建立過程中所依據的基本定律有哪些

簡潔明了。
簡化原則:實際的人體生理系統是多變數(參數)、多層次的復雜系統,建立數學模型需要對原型進行必要的。
在數學建模過程中,模型假設與模型建立是最重要的兩個步驟,兩者構成機理分析的重要環節.本文將進一步探討,在這兩個步驟中應遵從的基本原則和具體方法,並結合實例闡明這些原則。

⑤ 建模的五種基本方法

量綱分析法

量綱分析是20世紀初提出的在物理領域中建立數學模型的一種方法,它是在經驗和實驗的基礎上,利用物理定律的量綱齊次性,確定各物理量之間的關系。它是一種數學分析方法,通過量綱分析,可以正確地分析各變數之間的關系,簡化實驗和便於成果整理。

在國際單位制中,有七個基本量:質量、長度、時間、電流、溫度、光強度和物質的量,它們的量綱分別為M、L、T、I、H、J和N,稱為基本量綱。

量綱分析法常常用於定性地研究某些關系和性質,利用量綱齊次原則尋求物理量之間的關系,在數學建模過程中常常進行無量綱化,無量綱化是根據量綱分析思想,恰當地選擇特徵尺度將有量綱量化為無量綱量,從而達到減少參數、簡化模型的效果。

差分法

差分法的數學思想是通過taylor級數展開等方法把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的方程組,將微分問題轉化為代數問題,是建立離散動態系統數學模型的有效方法。

構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有以下幾種形式:一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。

差分法的解題步驟為:建立微分方程;構造差分格式;求解差分方程;精度分析和檢驗。

變分法

變分法是處理函數的函數的數學領域,即泛函問題,和處理數的函數的普通微積分相對。這樣的泛函可以通過未知函數的積分和它的導數來構造,最終尋求的是極值函數。現實中很多現象可以表達為泛函極小問題,即變分問題。變分問題的求解方法通常有兩種:古典變分法和最優控制論。受基礎知識的制約,數學建模競賽大專組的建模方法使用變分法較少。

圖論法

數學建模中的圖論方法是一種獨特的方法,圖論建模是指對一些抽象事物進行抽象、化簡,並用圖來描述事物特徵及內在聯系的過程。圖論是研究由線連成的點集的理論。一個圖中的結點表示對象,兩點之間的連線表示兩對象之間具有某種特定關系(先後關系、勝負關系、傳遞關系和連接關系等)。事實上,任何一個包含了某種二元關系的系統都可以用圖形來模擬。因此,圖論是研究自然科學、工程技術、經濟問題、管理及其他社會問題的一個重要現代數學工具,更是成為了數學建模的一個必備工具。

⑥ 數學建模需要學習哪些相關知識

參加數學建模競賽是不是需要學習很多知識?

沒有必要很系統的學很多數學知識,這是時間和精力不允許的。很多優秀的論文,其高明之處並不是用了多少數學知識,而是思維比較全面、貼合實際、能解決問題或是有所創新。有時候,在論文中可能碰見一些沒有學過的知識,怎麼辦?現學現用,在優秀論文中用過的數學知識就是最有可能在數學建模競賽中用到的,你當然有必要去翻一翻。
具體說來,大概有以下這三個方面:
第一方面:數學知識的應用能力
歸結起來大體上有以下幾類:
1)概率與數理統計
2)統籌與線軸規劃
3)微分方程;
相關的數學基礎知識包括
1、線性規劃 6、最優化理論
2、非線性規劃 7、管理運籌學
3、離散數學 8、差分方程
4、概率統計 9、層次分析
5、常微分方程
還有與計算機知識交叉的知識:計算機模擬。
上述的內容有些同學完全沒有學過,也有些同學只學過一點概率與數理統計,微分方程的知識怎麼辦呢?一個詞「自學」,記得數模評卷的負責教師曾經說過「能用最簡單淺易的數學方法解決了別人用高深理論才能解決的答卷是更優秀的答卷」。

第二方面:計算機的運用能力
一般來說凡參加過數模競賽的同學都能熟練地應用字處理軟體「Word」,掌握電子表格「Excel」的使用;「Mathematica」軟體的使用,最好還具備語言能力。這些知識大部分都是學生自己利用課余時間學習的。

第三方面:論文的寫作能力
前面已經說過考卷的全文是論文式的,文章的書寫有比較嚴格的格式。要清楚地表達自己的想法並不容易,有時一個問題沒說清楚就又說另一個問題

⑦ 為學習數學建模打基礎,需要學習哪些數學作為基礎

1.基礎:高等數學、線性代數、概率論與數理統計x0dx0a2.專業方面:運籌學(主要針對最優化問題),其他數學建模用書(主要看方法,例如層次分析法等)x0dx0a3.軟體方面:lingo、matlab、origin等x0dx0a5.美賽還要看翻譯(所以專業英語要好好學)、排版比較重要x0dx0a總結:數學建模不是純粹的數學知識,有時候數學建模用的數學知識很少,所以要了解建模過程,掌握建模方法(方法非常重要)。平時多看一些特等獎的建模論文,你會有意想不到的收獲

閱讀全文

與數學建模中數學理論有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:721
乙酸乙酯化學式怎麼算 瀏覽:1387
沈陽初中的數學是什麼版本的 瀏覽:1333
華為手機家人共享如何查看地理位置 瀏覽:1025
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:865
數學c什麼意思是什麼意思是什麼 瀏覽:1388
中考初中地理如何補 瀏覽:1276
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:683
數學奧數卡怎麼辦 瀏覽:1366
如何回答地理是什麼 瀏覽:1003
win7如何刪除電腦文件瀏覽歷史 瀏覽:1036
大學物理實驗干什麼用的到 瀏覽:1464
二年級上冊數學框框怎麼填 瀏覽:1680
西安瑞禧生物科技有限公司怎麼樣 瀏覽:905
武大的分析化學怎麼樣 瀏覽:1229
ige電化學發光偏高怎麼辦 瀏覽:1318
學而思初中英語和語文怎麼樣 瀏覽:1625
下列哪個水飛薊素化學結構 瀏覽:1407
化學理學哪些專業好 瀏覽:1470
數學中的棱的意思是什麼 瀏覽:1035