1. 數學學習的書籍
《10000個科學難題》序
前言
奧特(Vaught)猜想與拓撲奧特猜想
超緊基數典型內模型問題
遞歸可枚舉度中的格嵌入問題和雙量詞理論可判定性問題
高層有限波雷爾(Borel)等價關系中的兩個問題
極小塔問題
r=rω?及s=sω?
連續統勢確定問題
奇異基數問題
薩克斯(Sacks)關於波斯特(Post)問題的度不變解問題和馬丁(Martin)猜想
圖靈(Turing)等價問題
圖靈(Turing)度的自同構問題
是否存在一個穩定的一階完全理論,它有大於一的有窮多個可數模型
Cherlin-zilber猜想
帶指數函數的實數理論的可判定性問題
Shelalh唯一性猜想
微分封閉域上的平凡強極小集
3-Calabi-Yau代數的分類
阿廷(Artin)群的Grobner-Shirshov基
布如意(Broue)交換虧群猜想
布朗(Brown)問題
凱萊(Cayley)圖和相關的問題
福克斯(Foulkes)猜想
戈倫斯坦(Gorenstein)對稱猜想
卡普蘭斯基(Kaplansky)第六猜想
中山(Nakayama)猜想和廣義中山(Nakayama)猜想
拉姆拉斯(Ramras)問題
Smashing子范疇上的公開問題
巴斯-奎倫(Bass-Quillen)猜想
非半單Brauer代數的表示理論
非交換曲面的分類
關於碼交換等價於前綴碼的猜測
關於半群上一類重要同餘的一個系列推廣模式
關於有限碼具有有限完備化的判定問題
關於正則半群的兩個嵌入問題
廣義傾斜模中的兩個猜想
考克斯特群的胞腔
滿足正規子群極小條件的可解群的Fitting子群是否是冪零的?
模代數smash積的半素性
球極函數的提升Pieri型公式
穩定等價猜想
一些代數的Grobner-Shirshov基
由導出范疇建立量子群和典範基
有限維數猜想
ABC猜測
巴斯(Bass)猜想和索爾(Soule)猜想
Lichtenbaum猜想
里德一所羅門(Reed-Solomon)碼的解碼問題
沙努爾(Schanuel)猜想
哥德巴赫(Goldbach)猜想
關於不同模覆蓋系的厄爾多斯(Erdos)問題
關於倒數和發散序列的厄爾多斯圖蘭(Erdos-Turan)猜想
關於奇數階阿貝爾(Abel)群的Snevily猜想
關於有限域上代數曲線點數的Drinfeld-Vladt界
朗蘭茲(Langlands)綱領
類數1實二次域的高斯猜想
黎曼(Riemann)zeta函數在奇正整數點處值的超越性
黎曼(Riemann)猜想
歐拉常數的超越性
橢圓曲線的BSD猜想
希爾伯特第九問題:高斯二次互反律如何推廣
希爾伯特第十二問題:構作數域的最大阿貝爾擴域
岩澤(Iwasawa)理論的主猜想
……
編後記
2. 中國古代數學專著有哪些
中國古代數學專著有:
1、《九章算術》
《九章算術》其作者已不可考。一般認為它是經歷代各家的增補修訂,而逐漸成為現今定本的,西漢的張蒼、耿壽昌曾經做過增補和整理,其時大體已成定本。最後成書最遲在東漢前期,現今流傳的大多是在三國時期魏元帝景元四年(263年),劉徽為《九章》所作的注本。
《九章算術》在數學上還有其獨到的成就,不僅最早提到分數問題,也首先記錄了盈不足等問題,《方程》章還在世界數學史上首次闡述了負數及其加減運演算法則。它是一本綜合性的歷史著作,是當時世界上最簡練有效的應用數學,它的出現標志中國古代數學形成了完整的體系。
2、《周髀算經》
《周髀算經》原名《周髀》,是算經的十書之一。中國最古老的天文學和數學著作,約成書於公元前1世紀,主要闡明當時的蓋天說和四分歷法。唐初規定它為國子監明算科的教材之一,故改名《周髀算經》。
《周髀算經》在數學上的主要成就是介紹了勾股定理。(據說原書沒有對勾股定理進行證明,其證明是三國時東吳人趙爽在《周髀注》一書的《勾股圓方圖注》中給出的)及其在測量上的應用以及怎樣引用到天文計算。)
3、《海島算經》
《海島算經》是中國學者編撰的最早一部測量數學著作,亦為地圖學提供了數學基礎。由劉徽於三國魏景元四年(公元263年)所撰,本為《九章算術注》之第十卷,題為《重差》。
唐初開始單行,體例亦是以應用問題集的形式。研究的對象全是有關高與距離的測量,所使用的工具也都是利用垂直關系所連接起來的測竿與橫棒。有人說是實用三角法的啟蒙,不過其內容並未涉及三角學中的正餘弦概念。所有問題都是利用兩次或多次測望所得的數據,來推算可望而不可及的目標的高、深、廣、遠。
4、《張丘建算經》
《張丘建算經》,中國古代數學著作。(約公元5世紀)現傳本有92問,比較突出的成就有最大公約數與最小公倍數的計算,各種等差數列問題的解決、某些不定方程問題求解等。
自張邱建以後,中國數學家對百雞問題的研究不斷深入,百雞問題也幾乎成了不定方程的代名詞,從宋代到清代圍繞百雞問題的數學研究取得了很好的成就。
5、《緝古算經》
《緝古算經》 ,中國古代數學著作之一,王孝通撰。他是唐代初期數學家。根據《舊唐書》、《新唐書》以及《唐會要》的記載,王孝通出身於平民,唐高祖武德年間(公元623年前後)擔任算學博士,奉命與吏部郎中祖孝孫校勘傅仁鈞制訂的《戊寅歷》,提出異議30餘條,被提升為太史丞。
王孝通把畢生的精力都用在數學的研究方面。稱得上是這一時期最偉大的數學家。他的最大貢獻是在總結前人研究的基礎上,寫作了《緝古算術》。
3. 有哪些數學著作
科普類:
1 拓撲學奇趣,[蘇聯]伏.巴爾佳斯基,伏.葉弗來莫維契編著,裘光明譯
2 拓撲學的首要概念 作者:(美)陳錫駒(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)著 一般附註:據1966年英文版譯
3 Famous Problems of Elementary Geometry 作 者(德)克萊因(F. Kiein) , 譯 者 沈一兵
4 奇妙而有趣的幾何 作 者 韋爾斯
5 幾何學的故事 作者:列昂納多·姆洛迪諾夫
6 近代歐氏幾何學 作者:(美)R·A·約翰遜著、單壿譯
7 《古今數學思想》, (美)莫里斯·克萊因著,張理京等譯 共4冊
8 《數學,確定性的喪失》 作者:(美)克萊因 著,李宏魁 譯
9 數學珍寶:歷史文獻精選 著 作 者: 李文林
10《幾何學的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)著
11 幾何的有名定理 作者:(日)矢野健太郎著
12 什麼是數學 作者:(美)R·柯,H·羅賓 著,I·斯圖爾特 修訂,左平,張飴慈 譯
13 《證明與反駁》 作者:伊姆雷.拉卡托斯
14 數學與猜想(共兩卷) G.波利亞,
15 《數學的發現》 作者:(美)喬治·波利亞 著, 劉景麟 等譯
16 《怎樣解題》 作者:(美)G·波利亞|譯者:塗泓//馮承天
17 數學——它的內容,方法和意義(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亞歷山大洛夫 譯 者 孫小禮, 趙孟養 裘光明 嚴士健
18 圓錐曲線的幾何性質----通俗數學名著譯叢 作者:英國)a科克肖特
19 東西數學物語 作者:(日)平山諦 著,代欽 譯 叢書名: 通俗數學名著譯叢
20 來自聖經的證明(第3版)(英文版) 作者:(德)艾格尼,(德)齊格勒 著
21 計算出人意料(從開普勒到托姆的時間圖景) 作者:伊法兒.埃克郎
22 愛麗絲漫遊數學奇境 作者:(日)釣 浩康 著,吳方 譯
23 費馬大定理 又名: Fermat's Last Theorem 作者: (英)西蒙?辛格 譯者: 薛密 副標題: 一個困惑了世間智者358年的謎
24 100個著名數學問題
25 數學中的智巧
26 可怕的科學《經典數學》系列 北京少年兒童出版社 尼克.阿諾德【英】等
傳記類:
1 《數字情種》(愛多士傳) 作者:保羅.霍夫曼
2 《我的大腦敞開了——天才數學家保羅·愛多士傳奇》 作者布魯斯.謝克特[美]
3 《女數學家傳奇》 作者:徐品方
4 《一個數學家的辯白》 作者: 哈代 譯者: 王希勇
5 《數學大師》 譯者: 徐源 作者: (美)E·T·貝爾 副標題: 從芝諾到龐加萊
6 現代數學家傳略辭典 作 者 張奠宙
7 世界著名數學家傳記(上、下集) 作 者 吳文俊
8 數學精英
9 最後的煉金術士——牛頓傳 作者 (英)懷特
專業:
1 《從微分觀點看拓撲》J.W.米爾諾
2 無窮小分析引論 Introction to analysis of the infinite [作者]:歐拉
3 《自然哲學之數學原理》 作者:艾薩克.牛頓
4 幾何原本(13卷視圖全本) 作者:(古希臘)歐幾里得原著, 燕曉東編譯
5 《數論報告》希爾伯特
6 《算術研究》高斯
7 《代數幾何原理》哈里斯(Harris)
8. 《微積分學教程》菲赫金哥爾茲
9. 《有限群表示》J.P.塞爾
10. 《曲線和曲面的微分幾何》杜卡謨
11. 《曲面論》達布
12. 《數論導引》華羅庚
13. 《代數學基礎》賈柯伯遜
14. 《交換代數》阿蒂亞
4. 著名的數學著作有哪些
1、《張丘建算經》:中國古代數學著作。(約公元5世紀)現傳本有92問,比較突出的成就有最大公約數與最小公倍數的計算,各種等差數列問題的解決、某些不定方程問題求解等。自張邱建以後,中國數學家對百雞問題的研究不斷深入,百雞問題也幾乎成了不定方程的代名詞,從宋代到清代圍繞百雞問題的數學研究取得了很好的成就。
2、《四元玉鑒》:《四元玉鑒》是元代傑出數學家朱世傑的代表作,其中的成果被視為中國籌算系統發展的頂峰。它是一部成就輝煌的數學名著,受到近代數學史研究者的高度評價,認為是中國數學著作中最重要的一部,同時也是中世紀最傑出的數學著作之一。
但其美中不足的是,在四元玉鑒中,對於一些重要的問題如求解高次聯立方程組的消去法等解說過於簡略,並且對於書中每一個問題的解法也沒有列出詳細的演算過程,故比較深奧,人們很難讀懂。以致於自朱世傑之後,中國這種在數學上高度發展的局面不但沒有保持發展下去,反而很多成就在明、清的一段時期內幾乎失傳。
3、《數書九章》:《數書九章》是對《九章算術》的繼承和發展,概括了宋元時期中國傳統數學的主要成就,標志著中國古代數學的高峰。當它還是抄本時就先後被收入《永樂大典》和《四庫全書》。1842年第一次印刷後即在中國民間廣泛流傳。
《數書九章》最初叫《數術大略》或《數學大略》(9卷),分為9類,每類為一卷。約到元代時更名為《數學九章》,內容也由9卷改為18卷。明初抄本被收入《永樂大典》(1408),另抄本藏於文淵閣。明代學者王應遴傳抄時定名為《數書九章》,明末學者趙琦美再抄時沿用此名。抄本形式流傳到清代,1781年由李銳校訂後收入《四庫全書》。
4、《九章算術》:《九章算術》確定了中國古代數學的框架,以計算為中心的特點,密切聯系實際,以解決人們生產、生活中的數學問題為目的的風格。
該書內容十分豐富,全書總結了戰國、秦、漢時期的數學成就。同時,《九章算術》在數學上還有其獨到的成就,不僅最早提到分數問題,也首先記錄了盈不足等問題,《方程》章還在世界數學史上首次闡述了負數及其加減運演算法則。它是一本綜合性的歷史著作,是當時世界上最簡練有效的應用數學,它的出現標志中國古代數學形成了完整的體系。
5、《孫子算經》:《孫子算經》是中國古代重要的數學著作。成書大約在四、五世紀,也就是大約一千五百年前,作者生平和編寫年不詳。傳本的《孫子算經》共三卷。
卷上敘述算籌記數的縱橫相間制度和籌算乘除法,卷中舉例說明籌算分數演算法和籌算開平方法。卷下第31題,可謂是後世「雞兔同籠」題的始祖,後來傳到日本,變成「鶴龜算」。