導航:首頁 > 數字科學 > 傳統數學什麼意思

傳統數學什麼意思

發布時間:2023-08-11 22:06:51

㈠ 中國古代數學與希臘數學各有什麼特點

中國古代數學有著鮮明的特點。一,中國傳統數學具有鮮明的社會性。中國傳統數學最基本的特點是具有鮮明的社會性。通觀中國古典數學著作的內容,幾乎都與當時社會生活的實際需要有著密切的聯系。二,是中國傳統數學具有明顯的政治經濟導向。三,是中國傳統數學注重形數結合、寓理於算,理論高度概括。

古希臘是個充滿神話的國度,古希臘數學的特點也很神化,如下:一,希臘人將數學抽象化,使之成為一種科學,具有不可估量的意義和價值。希臘人堅持使用演繹證明,認識到只有用勿容置疑的演繹推理法才能獲得真理。要獲得真理就必須從真理出發,不能把靠不住的事實當作已知。從《幾何原本》中的10個公理出發,可以得到相當多的定理和命題。 二,希臘人在數學內容方面的貢獻主要是創立平面幾何、立體幾何、平面與球面三角、數論,推廣了算術和代數,但只是初步的,尚有不足乃至錯誤;三,希臘人重視數學在美學上的意義,認為數學是一種美,是和諧、簡單、明確以及有秩序的藝術;四,希臘人認為在數學中可以看到關於宇宙結構和設計的最終真理,使數學與自然界緊密聯系起來,並認為宇宙是按數學規律設計的,並且能被人們所認識的。

㈡ 數學是什麼意思

數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段。

定義:

亞里士多德把數學定義為「數量數學」,這個定義直到18世紀。從19世紀開始,數學研究越來越嚴格,開始涉及與數量和量度無明確關系的群論和投影幾轎察何等抽象主題,數學家和哲學家開始提出各種新的定義。這些定義中的一些強調了大量數學的演繹性質敏帆巧,一些強調了它的抽象性,一些強調數學中的某些話題。

即使在專業人士中,對數學的定義也沒有達成共識。數學是否是藝術或科學,甚至沒有一致意見。許多專業數學家對數學的定義不感興趣,或者認為它是不可定義的。有些只是說,「數學是數學家做的。」

㈢ 中國傳統數學是世界數學發展長河的一支不容忽視的源頭,與西方數學相比,它有哪些重要特點

中國數學的特點和對世界的影響中國數學的特點
(1)以演算法為中心,屬於應用數學 中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立演算法與提高計算技術而展開的
(2)具有較強的社會性 中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在於「通神明、順性命,經世務、類萬物」,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起 同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質
(3)寓理於算,理論高度概括 由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次而無理論建樹 其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等
       中國數學對世界的影響 數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統 在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展 中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方 而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展

㈣ 中國傳統數學的主要特徵是什麼從哪些成就表現出來

這叫做冪。

冪指乘方運算的結果。n^m指將n自乘m次。把n^m看作乘方的結果,叫做n的m次冪。
其中,n稱為底數,m稱為指數(寫成上標)。當不能用上標時,例如在編程語言或電子郵件中,通常寫成n^m或n**m,亦可以用低德納箭號表示法,寫成n↑m,讀作「n的m次方」。
當指數為1時,通常不寫出來,因為那和底的數值一樣;指數為2、3時,可以讀作「n的平方」、「n的立方」。
n^m的意義亦可視為1×n×n×n...∶起始值1(乘法的單位元)乘底指數這麼多次。這樣定義了後,很易想到如何一般化指!

㈤ 中國傳統數學的主要特徵是什麼從哪些成就表現出來

數學是研究客觀事物的空間形式與數量關系的科學。它不受任何時間和空間的限制,強烈地顯現這一本質屬性。然而,在古代各個時期不同的文化傳統中,數學的表現形式往往也不盡相同,各自呈現出自己的特徵。比如中國古典數學在表現形式、思維模式、與社會實際的關系、研究的中心以及發展的歷程等許多方面與其他文化傳統,特別是古希臘數學有較大的區別。

首先是其表現形式,這里主要指數學經典的著作形式。古希臘數學常常採取抽象的公理化的形式,而中國古典數學則是以術文統率例題的形式。兩種不同的形式,代表著迥然不同的兩種風格。這兩種形式和風格同樣可以闡發數學理論的基礎。有人往往忽略了這一點,把中國古代數學著作籠統地概括成應用問題集的形式。只要仔細分析、比較一下數學著作本身,就不難發現這個結論是極不正確的。比如最重要的著作《九章算術》,它的九章中,方田、粟米、少廣、商功、盈不足、方程六章的全部及衰分、均輸、勾股三章的部分,要麼先列出一個或幾個例題,然後給出十分抽象的「術」;要麼先列出十分抽象的「術」,然後給出若干例題。這里的「術」都是些公式或抽象的計算程序;前者的例題只有題目及答案,後者的例題則包括題目、答案與「術」。所謂「術」就是闡述各種演算法及具體應用,類似於後世的細草。《九章算術》中只有約五分之一的部分,即衰分、均輸、勾股三章的約50個題目,可以說是應用問題集的形式。由此就得出《九章算術》是一部應用問題集的結論是不恰當的,正確的提法應是術文統率例題的形式。後來的《孫子算經》等的主體應該說是應用問題集的形式,但把一些預備知識放到了卷首。宋元數學高潮中的著作,賈憲《黃帝九章算經細草》的抽象性更高於《九章算術》,其它著作由於演算法更為復雜,演算法的抽象性有時達不到《九章》的程度,但是也作了可貴的努力,如《數書九章》的「大衍總數術」及其核心「大衍求一術」就是同餘式解法的總術;「正負開方術」用抽象的文字闡述了開四次方的方法後,又聲明「後篇效此」,說明也是普遍方法。朱世傑的兩部著作都把大量預備知識、演算法放在卷首,《四元玉鑒》的卷首還載有天元術、二元術、三元術、四元術的解法範例。《測圓海鏡》更是把「圓城圖式」及後面要用到的定義、命題列入卷一的「識別雜記」。因此,總的說來,演算法(術)是解應用題的關鍵,「術」自然就成為中國古代數學的核心。中國數學著作是以演算法為核心,演算法統率例題的形式。中國傳統文化

其次是關於數學理論的研究。古希臘數學使用演繹推理,使數學知識形成了嚴謹的公理化體系。許多學者誇大了中國古算與古希臘數學的差別,認為中國古代數學成就只是經驗的積累,沒有推理,尤其是沒有演繹推理。這是對中國古代數學缺乏起碼了解的膚淺之見。遺憾的是,這種膚淺之見被某些科學泰斗所贊同而頗為流行,甚至成為論述現代科學沒有在中國產生的出發點。誠然,中國古代數學與哲學結合得不像古希臘那麼緊密,中國古代數學大家也不像古希臘數學大師那樣大多是思想界的頭面人物或思想流派的首領。一般說來,中國思想家對數學的興趣遠遜於古希臘的同仁,先秦諸子中即使數學修養最高的墨家,其數學成就也難望古希臘思想家的項背。同樣,中國數學家,就整體而言,對數學理論研究的關注,也遠不如古希臘數學家。比如,《九章算術》和許多數學著作對數學概念沒有定義,許多數學問題的表述,並不嚴謹。這就要求讀者必須站在作者的立場上,與作者共處於一個和諧的體系中,才能理解其內容,這或多或少也阻礙了數學理論的發展。硬說中國古代與古希臘同樣重視數學理論研究,固然是不妥的。反之,說中國古代數學沒有理論,沒有推理,也是不符史實的。《周髀算經》記載,先秦數學家陳子在教誨榮方時,指出他之所以對某些數學原理不能理解,在於他「之於數未能通類」,他認為數學的「道術」,「言約而用博」,必須做到「能類以合類」。陳子大約處於《九章算術》編纂過程的初期。實際上,《九章》的編纂正是貫穿了「通類」、「類以合類」的思想。《九章算術》的作者把能用同一種數學方法解決的問題歸於一類,提出共同的、抽象的「術」,如方田術、圓田術、今有術、衰分術、返衰術、少廣術、開方術、盈不足術、均輸術、方程術、勾股術等等,又將這些術及例題按其性質或應用分成方田、粟米、衰分、少廣、商功、均輸、盈不足、方程、勾股九類。劉徽進一步挖掘《九章》許多方法的內在聯系,又將衰分術、均輸術、方程新術等歸結到今有術。劉徽正是通過「事類相推」,找出了各種方法的歸宿,發現數學知識是「枝條雖分而同本干」,並「發自一端」的一株大樹,形成了自己完整的數學理論體系。賈憲總結開方法,創造開方作法本源。楊輝總結出勾股生變十三名圖,李冶探討了各種容圓關系,給出600多條公式,也都是通過歸納、類比做到通類,進而「類以合類」,進行數學的理論概括。

通過「合類」,歸納出抽象的公式之後,將這些公式應用於解某些數學問題,實際上是從一般到特殊的演繹過程,這里要特別談一下中國古代數學中有沒有演繹推理的問題。大家知道,數學知識的獲得,要通過類比、歸納、演繹各種推理途徑,而證明一個數學命題的正確性,則必須依靠演繹推理。中國古代數學著作正是大量使用演繹推理。以中國古代最為發達的高次方程這一分支為例,劉徽、王孝通都提出了方程的推導過程,金元數學家更創造了設未知數列方程的天元術,李冶將用天元術列方程所需要的定理、公式大都在卷一的「識別雜記」中給出。劉徽、王孝通、秦九韶、李冶、朱世傑等推導高次方程的過程都是依靠演繹推理的,因而是正確的。至於劉徽用極限思想和無窮小分割對圓面積公式的證明,對錐體體積公式的證明;用出入相補原理對解勾股形諸公式的證明,對大量面積、體積公式的證明,對開方術的證明;利用齊同原理對方程術、盈不足術及許多演算法的證明,都是演繹推理的典範。只要不帶偏見,都會認識到劉徽在拓展數學知識時以歸納、類比為主,而在論證《九章算術》的公式、演算法的正確性時,在批駁《九章算術》的某些錯誤時,則以演繹推理為主,從而把他自己掌握的數學知識建立在可靠的理論基礎之上。

說數學研究與思想界結合得不密切,是就整體而言的,並不是說每個數學家都如此,比如劉徽就例外。他深受魏晉辯難之風的影響,他對《九章算術》「析理以辭,解體用圖」,「析理」正是辯難之風的要件,劉徽析理的原則、析理的方法都是與當時辯難之風合拍的。當然,即使是劉徽對許多數學概念的探討還沒達到古希臘那麼深入的地步。比如,劉徽將無窮小分割引入數學證明是前無古人的貢獻,卻從未考慮過潛無窮小與實無窮小的區別。不過,這未必是壞事。古希臘數學家無法圓滿解決潛無限與實無限的問題,不得不把無窮小概念排除在數學研究之外,因此,他們在證明數學命題時,從未使用過極限思想和無窮小分割。劉徽則不然,他認為圓內接正多邊形邊數無限增多,最後必定「與圓周合體」,因此可以對與圓周合體的正多邊形進行無窮小分割並求其面積之和;他認為對陽馬與鱉臑組成的塹堵進行無窮分割,可以達到「微則無形」的地步;劉徽在極限思想的運用上遠遠超過了古希臘的同類思想,達到了文藝復興前世界數學界的最高峰。古希臘數學家認為正方形的對角線與其邊長沒有公度,即與1沒有公度,導致數學史上的第一次危機,使古希臘數學轉向,把計算排除在數學之外,只注重空間形式的研究,因而在無理數面前束手無策。而劉徽、祖沖之等則不然,他們對「開之不盡」的「不可開」的數,敢於繼續開方,「求其微數」,以十進分數無限逼近無理根的近似值。沒有陷入哲學的爭論,從數學計算的實際出發,使中國數學家能夠繞過曾導致希臘數學改變航向或裹足不前的暗礁,在數學理論和實踐上達到古希臘數學家所不曾達到的高度。

長於計算,以演算法為中心,是中國古代數學的顯著特點。古希臘數學只考慮數和形的性質,而不考慮具體數值。比如,他們很早就懂得,任何一個圓的周長與直徑之比是個常數,但這個常數的數值,幾百年無人問津,直到阿基米德才求出其值的范圍。相反,中國古典數學幾乎不研究離開數量關系的圖形的性質,而通過切實可行的方法把實際問題化為一類數學模型,然後用一套程序化即機械化的演算法求解。算經中的「術」全是計算公式與計算程序,或應用這些公式、程序的細草,所有的問題都要算出具體數值作為答案,即使幾何問題,也要算出有關因素的長度、面積、體積。這就是幾何方法與演算法相結合,或幾何問題的演算法化。劉徽說:「以法相傳,亦猶規矩、度量可得而共」(《九章算術注·序》),清楚地表達了中國古算形、數結合的特點。《九章算術》的開方術、方程術、盈不足術、衰分術、均輸術,劉徽計算圓周率的割圓術、計算弧田面積近似值的方法,賈憲求賈憲三角各廉的增乘方法,賈憲開創而秦九韶使之完備的求高次方程正根的正負開方術,秦九韶的同餘式解法,朱世傑的四元術,等等,都有相當復雜的計算程序。數學運算的程序化使復雜的計算問題易於掌握,即使不懂其數學原理,也可掌握其程序,於是產生了程序的輔助用表「立成」。上述這些程序都具有完全確定性、對一整類問題適用性及有效性等現代演算法的三個特點。許多程序幾乎可以一字不差地搬到現代電子計算機上實現。

先進的記數制度,強烈的位置值制是促成中國演算法理論充分發展的重要因素。中國最早發明了十進位置值制記數法,這種記數法十分有利於加減乘除四則運算及分數、小數的表示。加之漢語中數字都是單音節,便於編成口訣,促成籌算乘除捷演算法向口訣的轉化。而籌算的使用使分離系數表示法成為順理成章。線性方程組的分離系數表示法、開方式的記法、天元多項式、四元式的記法,實際上也是一種位置值制。未知數的冪次完全由其在表達式中的位置決定,而不必寫出未知數本身,如開方式中,自上而下依次是「商」、「實」(常數項)、「方」(一次項)、「一廉」、「二廉」(二、三次項系數)……隅(最高次項系數)。天元式也是如此,只是因為運算中有正冪也有負冪,才需要在常數項旁標一「太」字,或在一次項旁標一「元」字,未知數冪次完全由與「太」或「元」的相對位置決定。這種表示法特別便於開方或加減乘除運算,尤其是用天元的冪次乘(或除),只要上下移動「太」或「元」字的位置即可。

數學理論密切聯系實際,是中國古代數學的又一顯著特徵。不能把古算經的所有題目都看成日常生產生活的應用題,有些題目只是為了說明演算法的例題,《九章算術》和《測圓海鏡》中都有此類題目。但是,中國古算確實是以應用為目的的,這是與古希臘數學的顯著區別之一。後者公開申明不以實際應用為目的,而是看成純理念的精神活動,歐幾里得幾乎抹去了《幾何原本》的實際來源的所有蛛絲馬跡。而中國數學家卻從不諱言研究數學的功利主義目的。自《漢書·律歷志》到劉徽、秦九韶,都把數學的作用概括為「通神明」、「類萬物」兩個方面。這里神明的意義既可作神秘主義來理解,也可以看作說明物質世界的變化性質的范疇,或二者兼而有之。《九章算術》劉徽為其注沒有任何神秘主義的成份,對通神明的作用也沒作任何闡發,劉徽倒是明確指出了《九章算術》各章在實際生產生活中的應用范圍:方田以御田疇界域,粟米以御交質變易,衰分以御貴賤稟稅,少廣以御積冪方圓,商功以御功程積實,均輸以御遠近勞費,盈不足以御隱雜互見,方程以御錯糅正負,勾股以御高深廣遠,顯然是「類萬物」方面。秦九韶把「通神明」看作數學作用之大者,並且其理解是神秘主義與世界變化的性質二者兼而有之的,而把類萬物、經世務看成數學作用之小者。盡管他表示要將數學「進之於道」,但他的數學研究實踐使他感到對於大者仍「膚末於見」,而注重於小者,認識到「數術之傳,以實為體」,因此「設為問答以擬於用」。他的《數書九章》除第一問外,大都是實際生活、生產及各種工程的應用題,反映南宋經濟活動之翔實遠勝於《九章算術》等著作對當時現實經濟活動的反映。總之,中國數學密切聯系實際,並在實際應用中得到發展。也許正因為有這個長處,中國數學從《九章算術》到宋元高潮,基本上堅持了唯物主義傳統,未受到數字神秘主義的影響。明朝著作有一些神秘主義的東西,具有穿靴戴帽的性質,但仍不能改變以實際應用為目的這一總的特徵。

統治者對數學的態度造成了中國與希臘數學不同的發展特點。古希臘統治者非常重視數學,造成希臘數學有很強的連續性、繼承性。而中國古代的統治者,除個別者外,大都不重視數學。秦始皇統一中國,較為重視數學的墨家遭到鎮壓,漢朝以後獨尊儒術,儒法合流,讀經學禮,崇尚文史,成為一種社會風氣。由於數學對國計民生的重大作用,統治階級又不得不承認「算術亦六藝要事」(《顏氏家訓·雜藝》),但卻主張「可以兼明,不可以專業」(同上)。數學一直被視為「九九賤技」。劉徽哀嘆「當今好之者寡」,(《九章算術注·序》)秦九韶說「後世學者鄙之不講」,(《數書九章序》)李冶以大儒研究數學,自謂「其憫我者當百數,其笑我者當千數」。(《測圓海鏡序》)劉徽所處之魏晉,秦、李所處之宋元,都是中國數學興盛時期,尚且如此,何論其他!二十四史,林林總總,列入無數帝王將相,以及文學家、思想家,甚至烈女節婦,卻沒有為一個數學家立傳,祖沖之、李冶有傳,卻是以文學家、名臣的身份入傳的。社會的需要,以及世代數學家不計憫笑,刻苦鑽研,自漢迄元,使中國數學登上了世界數壇的一個又一個高峰,然而中國數學的發展常常大起大落,艱難地前進。更使人覺得奇怪的是,高潮往往出現在戰亂時期,如戰國時期《九章算術》主要成就的奠基,魏晉南北朝數學理論的建立,宋遼金元籌算數學的高潮;相反,低谷往往出現在大一統的太平盛世,如唐、明兩代,不僅數學建樹甚少,甚至到了大數學家看不懂前代成果的可笑地步!這當然絲毫不意味著戰亂、分裂比安定、統一更有利於數學的發展,而是因為戰亂時期,儒家思想的統治地位往往受到沖擊,社會思潮較為活躍,思想比較解放。同時由於戰亂,讀經入仕的道路被堵,知識分子稍稍能按自己的興趣和社會的需求發揮自己的才智,所蘊藏的數學才能也得到較充分展示,致使處於夾縫中的數學研究狀況反而比大一統的太平盛世更好一些罷了。

㈥ 數學是什麼意思數學是什麼意思啊

數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」

自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。

從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。

對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。

事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」

另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」

從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。

基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。

人類從學會計數開始就一直和自然數打交道了,後來由於實踐的需要,數的概念進一步擴充,自然數被叫做正整數,而把它們的相反數叫做負整數,介於正整數和負整數中間的中性數叫做0。它們和起來叫做整數。

對於整數可以施行加、減、乘、除四種運算,叫做四則運算。其中加法、減法和乘法這三種運算,在整數范圍內可以毫無阻礙地進行。也就是說,任意兩個或兩個以上的整數相加、相減、相乘的時候,它們的和、差、積仍然是一個整數。但整數之間的除法在整數范圍內並不一定能夠無阻礙地進行。

人們在對整數進行運算的應用和研究中,逐步熟悉了整數的特性。比如,整數可分為兩大類—奇數和偶數(通常被稱為單數、雙數)等。利用整數的一些基本性質,可以進一步探索許多有趣和復雜的數學規律,正是這些特性的魅力,吸引了古往今來許多的數學家不斷地研究和探索。

閱讀全文

與傳統數學什麼意思相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:699
乙酸乙酯化學式怎麼算 瀏覽:1368
沈陽初中的數學是什麼版本的 瀏覽:1314
華為手機家人共享如何查看地理位置 瀏覽:1007
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:844
數學c什麼意思是什麼意思是什麼 瀏覽:1365
中考初中地理如何補 瀏覽:1256
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:667
數學奧數卡怎麼辦 瀏覽:1345
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1018
大學物理實驗干什麼用的到 瀏覽:1444
二年級上冊數學框框怎麼填 瀏覽:1656
西安瑞禧生物科技有限公司怎麼樣 瀏覽:811
武大的分析化學怎麼樣 瀏覽:1208
ige電化學發光偏高怎麼辦 瀏覽:1296
學而思初中英語和語文怎麼樣 瀏覽:1602
下列哪個水飛薊素化學結構 瀏覽:1383
化學理學哪些專業好 瀏覽:1448
數學中的棱的意思是什麼 瀏覽:1014