1. 初中數學:解二元一次方程組,要過程
這里需要結合實際例子進行講解:
如:求方程式x+y=3和2x+y=5的解。
1、將兩個方程寫成x=……的形式,即:x=3-y,x=(5-y)÷2;
2、這樣方程式就轉化為一元一次方程:3-y=(5-y)÷2,解得y=1;
3、進一步求得x=2。
(1)數學中的逐一法怎麼算擴展閱讀:
消元思想:
「消元」是解二元一次方程組的基本思路。所謂「消元」就是減少未知數的個數,使多元方程最終轉化為一元多次方程再解出未知數。這種將方程組中的未知數個數由多化少,逐一解決的解法,叫做消元解法。
消元方法一般分為:代入消元法,簡稱:代入法 ;加減消元法,簡稱:加減法 ;順序消元法 ;整體代入法。
2. 數學解方程有幾種方法
1、估演算法:剛學解方程時的入門方法。直接估計方程的解,然後代入原方程驗證。
2、應用等式的性質進行解方程。
3、合並同類項:使方程變形為單項式
4、移項:將含未知數的項移到左邊,常數項移到右邊
例如:3+x=18
解:x=18-3
x=15
5、去括弧:運用去括弧法則,將方程中的括弧去掉。
4x+2(79-x)=192
解: 4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6、公式法:有一些方程,已經研究出解的一般形式,成為固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7、函數圖像法:利用方程的解為兩個以上關聯函數圖像的交點的幾何意義求解。
(2)數學中的逐一法怎麼算擴展閱讀
解方程依據
1、移項變號:把方程中的某些項帶著前面的符號從方程的一邊移到另一邊,並且加變減,減變加,乘變除以,除以變乘;
2、等式的基本性質
性質1:等式兩邊同時加(或減)同一個數或同一個代數式,所得的結果仍是等式。用字母表示為:若a=b,c為一個數或一個代數式。
(1)a+c=b+c
(2)a-c=b-c
性質2:等式的兩邊同時乘或除以同一個不為0的數,所得的結果仍是等式。
用字母表示為:若a=b,c為一個數或一個代數式(不為0)。則:
a×c=b×c 或a/c=b/c
性質3:若a=b,則b=a(等式的對稱性)。
性質4:若a=b,b=c則a=c(等式的傳遞性)。
3. 數學豎式的標准格式!
數學豎式的標准格式如下。除到哪一位上面不夠商1時,就在那一位上面補0,具體參考除法豎式。
一、加法減法豎式格式如下:
(3)數學中的逐一法怎麼算擴展閱讀:
列豎式筆算有兩個要點:相同數位對齊,從個位加起。(不進位可以先加十位,但是為以後的進位加法著想,不提倡)。在練習本上的格式嚴格按以下要求來進行:
1.算式的橫式從數學本橫格線的左端開始寫;
2.豎式:第一個加數寫在橫式第二個加數下面,加號與橫式中的加號對齊,加數、加數、和,三者的相同數位一定要對齊。
3.列豎式算完後,不要漏掉橫式上的得數。
4. 如何在數學中舉一反三
一定要理解」數學公式「和那些「出題模式」,而不是花太多時間和精力在細節計算上。式子,永遠比式子里的數要重要得多。做完一道題後,看看那些過程和式子,多理解裡面的深層次意思,而不是拘泥於那些具體的數字。公式永遠都在,換的都是那些數字罷了。打個比方:「鐵打的營盤,流水的兵」。公式就是營盤,那些都是根基。那些數字只是來來去去的兵罷了,其實根本不重要。換了數字,只要公式在,一切照舊。數學里的公式,一定要能非常深刻的理解其中的意思,不能死記硬背。
還有,同樣一個等式,這次讓你求的是左邊的量,下次就可能讓你求等式右邊某個量。在學習數學物理的方程等式的時候,一定要多注意,仔細觀察那些量之間的關系。數學和物理是特別考察這一點的,一定要能活學活用。化學生物因為記憶的比重多一些,所以這方面考察較少。
還有就是多做題,當然這是廢話。學習就跟玩RPG游戲一樣,戰斗經驗值也是等級的重要一部分。那些大牛們,其實做的題也要比一般人要多很多。但是題目不能白白多做,做完題後要總結歸納,尤其是那些做錯的題目,否則題目就白做了。
5. 初中數學常用的幾種經典解題方法
初中數學里常用的幾種經典解題方法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是兄念桐在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,羨坦高塵以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10.客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法