① 數學運算符號的來歷是什麼
1、「+」號,是15世紀德國數學家魏德美創造的。在橫線上加上一豎,表示增加。
2、「-」號,也是魏德美創造的。從加號中減去一豎,表示減少。
3、「×」號,是18世紀美國數學家歐德萊最先使用的。它表示增加的另一種方式,所以把加號斜過來寫。
4、「÷」號,是18世紀瑞士人哈納創造的。它表示分解的意思,用一條橫線把兩個圓點分開。
5、「=」號,是16世紀英國學者列科爾德發明的。
(1)上數學是什麼號擴展閱讀
數學符號化讓人們以約定的、規范的形式來表達數學思想。它以濃縮的形式表達信息,從而加快了數學思維的速度,推動了數學的發展。要做好常用數學符號的教學,須做好以下方面的工作。
1、正確使用數學符號的關鍵是要讓學生理解數學符號的含義及實質。教學概念本身是抽象的,而數學符號往往又是數學概念的代表。因此,要弄清楚每個教學符號的含義及實質。
嚴格遵守數學符號的書寫規則,以期養成一絲不苟的良好習慣;一個表達中的數學符號體系要統一;要使學生遵守符號大小寫的書寫習慣,不要把常用的數學符號寫得過大或過小或與一般寫法不同。
2、要使學生明確符號化思想的意義與實質。我們應該意識到數學教學中無時不在使用數學語言,教師與學生間的交流及學生間的交流、合作都會用數學語言,因此教師需要啟發學生把「數學問題」譯為數學語言,讓學生對數學符號化思想及具體的數學符號就有了較為完整的、透徹的理解,並能運用它解決問題。
② 數學上的符號都代表什麼意思
數學集合符號都有:N、N+、Z、Q、R、C等。具體介紹如下:
1、全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N。
2、非負整數集內排除0的集,也稱正整數集,記作N+(或N*)。
3、全體整數的集合通常稱作整數集,記作Z。
4、全體有理數的集合通常簡稱有理數集,記作Q。
5、全體實數的集合通常簡稱實數集,記作R。
6、復數集合計作C。
(2)上數學是什麼號擴展閱讀:
1、集合,是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。例如全中國人的集合,它的元素就是每一個中國人。我們通常用大寫字母如A,B,S,T,...表示集合,而用小寫字母如a,b,x,y,...表示集合的元素。
2、元素與集合的關系有:「屬於」與「不屬於」兩種。
3、集合的運算:
(1)集合交換律:A∩B=B∩A;A∪B=B∪A。
(2)集合結合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
③ 數學符號都表示什麼怎麼讀
運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
關系符號:如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號。
「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。
「→」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號。
「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。
結合符號:如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」,比如。
性質符號:如正號「+」,負號「-」,正負號「」(以及與之對應使用的負正號「」)。
省略符號:如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),∵因為∴所以。
總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數(n元素的總個數;r參與選擇的元素個數),冪等。
排列組合符號:C組合數、A(或P)排列數、n元素的總個數、r參與選擇的元素個數、!階乘,如5!=5×4×3×2×1=120,規定0!=1、!!半階乘(又稱雙階乘)。
例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。
離散數學符號:∀全稱量、∃存在量詞、├斷定符(公式在L中可證)、╞滿足符(公式在E上有效,公式在E上可滿足)、﹁命題的「非」運算。
如命題的否定為﹁p、∧命題的「合取」(「與」)運算、∨命題的「析取」(「或」,「可兼或」)運算、→命題的「條件」運算。
↔命題的「雙條件」運算的、p<=>q命題p與q的等價關系、p=>q命題p與q的蘊涵關系(p是q的充分條件,q是p的必要條件)、A*公式A的對偶公式,或表示A的數論倒數(此時亦可寫為)。
wff合式公式:iff當且僅當、↑命題的「與非」運算(「與非門」)、↓命題的「或非」運算(「或非門」)、□模態詞「必然」、◇模態詞「可能」、∅空集、∈屬於(如"A∈B",即「A屬於B」)、∉不屬於、P(A)集合A的冪集。
|A|集合A的點數、R²=R○R[R、=R、○R]關系R的「復合」、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,還有相應的⊄,⊈,⊉等。
∪集合的並運算:U(P)表示P的領域、∩集合的交運算、-或集合的差運算、⊕集合的對稱差運算、〡限制、集合關於關系R的等價類。
A/R集合A上關於R的商集、[a]元素a產生的循環群、I環,理想、Z/(n)模n的同餘類集合、r(R)關系R的自反閉包。
s(R)關系R的對稱閉包、CP命題演繹的定理(CP規則)、EG存在推廣規則(存在量詞引入規則)、ES存在量詞特指規則(存在量詞消去規則)、UG全稱推廣規則(全稱量詞引入規則)、US全稱特指規則(全稱量詞消去規則)。
更多數學表達符號:
∞無窮大、π圓周率、|x|絕對值、∪並集、∩交集、≥大於等於、≤小於等於、≡恆等於或同餘、ln(x)以e為底的對數、lg(x)以10為底的對數、floor(x)上取整函數、ceil(x)下取整函數。
xmody求余數、x-floor(x)小數部分、∫f(x)dx不定積分、∫[a:b]f(x)dxa到b的定積分、f(x)函數f在自變數x處的值、sin(x)在自變數x處的正弦函數值、exp(x)在自變數x處的指數函數值,常被寫作ex、logba以b為底a的對數。
cosx在自變數x處餘弦函數的值、tanx其值等於sinx/cosx、cotx餘切函數的值或cosx/sinx、secx正割含數的值,其值等於1/cosx、cscx餘割函數的值,其值等於1/sinx、asinxy正弦函數反函數在x處的值,即x=siny。
acosxy餘弦函數反函數在x處的值,即x=cosy、atanxy正切函數反函數在x處的值,即x=tany、acotxy餘切函數反函數在x處的值,即x=coty、asecxy正割函數反函數在x處的值,即x=secy、acscxy餘割函數反函數在x處的值,即x=cscy。
④ 數學符號都有哪些
數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現在常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。
1.運算符號:
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
2.關系符號:
如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」),x,y等任何字母都可以代表未知數。
3.結合符號:
如小括弧「()」,中括弧「[ ]」,大括弧「{ }」,橫線「—」
4.性質符號:
如正號「+」,負號「-」,正負號「
5.省略符號:
∵因為
∴所以
6.排列組合符號:
C組合數
A (或P)排列數
n元素的總個數
r參與選擇的元素個數
!階乘,如5!=5×4×3×2×1=120,規定0!=1
7.離散數學符號
∀全稱量詞
∃存在量詞
其他:
在Microsoft Word中可以插入一般應用條件下的所有數學符號,以Word2010軟體為例介紹操作方法:第1步,打開Word2010文檔窗口,單擊需要添加數學符號的公式,並將插入條游標定位到目標位置。第2步,在「公式工具/設計」功能區的「符號」分組中,單擊「其他」按鈕打開符號面板。默認顯示的「基礎數學」符號面板。用戶可以在「基礎數學」符號面板中找到最常用的數學符號。同樣地,Alt+41420(即壓下Alt不放,依次按41420(小鍵盤),最後放開Alt 就可以打出 √。
⑤ 是什麼數學符號啊表示什麼意思
Sigma(大寫Σ,小寫σ,中文音譯:西格馬),是第十八個希臘字母。在希臘語中,若果一個單字的最末一個字母是小寫sigma,要把該字母寫成 ς,此字母又稱final sigma(Unicode: U+03C2)。其在現代的希臘數字代表6。
Σ用於:
● 數學上的總和符號(又稱和式號)
● 洛克人X中的西格馬(Sigma),X和Zero的長期敵人
小寫σ用於:
● σ鍵,一類原子軌道"頭碰頭"形成的化學鍵
● 統計學上的標准差
以"Σ"來表示和式號(Sign of summation)是歐拉(1707-1783)於1755年首先使用的,這個符號是源於希臘文(增加)的字頭,"Σ"正是σ的大寫。
示例:ΣAn=A1+A2+...+An
∑是數列求和的簡記號,它後面的k^2是通項公式,下面的k=1是初始項開始的項數,頂上的n是末項的項數。
n
∑k^2=1^2+2^2+……+n^2(1)
k=1
n
∑(2k+1)=3+5+……+(2n+1)(2)
k=1
則(1)+(2)=
n
∑(k+1)^2=2^2+3^2+……+(n+1)^2
k=1
著名的二項式定理的展開式可以表示成
n
∑C(n,k)a^(n-k)b^k.
k=0
由此可見應用的可能,它的應用是相當靈活的。
⑥ 數學符號各有什麼含義(請說出所有的符號)
(1)數量符號:如
:i,2+
i,a,x,自然對數底e,圓周率
∏。
(2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(
),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。
(3)關系符號:如「=」是等號,「≈」或「
」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「
」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。
(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」
(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」
(6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C
),冪(aM),階乘(!)等。
符號
意義
∞
無窮大
PI
圓周率
|x|
函數的絕對值
∪
集合並
∩
集合交
≥
大於等於
≤
小於等於
≡
恆等於或同餘
ln(x)
以e為底的對數
lg(x)
以10為底的對數
floor(x)
上取整函數
ceil(x)
下取整函數
x
mod
y
求余數
小數部分
x
-
floor(x)
∫f(x)δx
不定積分
∫[a:b]f(x)δx
a到b的定積分
P為真等於1否則等於0
∑[1≤k≤n]f(k)
對n進行求和,可以拓廣至很多情況
如:∑[n
is
prime][n
<
10]f(n)
∑∑[1≤i≤j≤n]n^2
lim
f(x)
(x->?)
求極限
f(z)
f關於z的m階導函數
C(n:m)
組合數,n中取m
P(n:m)
排列數
m|n
m整除n
m⊥n
m與n互質
a
∈
A
a屬於集合A
#A
集合A中的元素個數