Ⅰ 數學歷史是怎麼演變而來的
數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點.數學的希臘語μαθηματικός(mathematikós)意思是「學問的基礎」,源於μάθημα(máthema)(「科學,知識,學問」).
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.
(1)第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破.除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年.算術(加減乘除)也自然而然地產生了.古代的石碑亦證實了當時已有幾何的知識.
(2)更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普.歷史上曾有過許多且分歧的記數系統.
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的.這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究.
(3)到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備.17世紀變數概念的產生使人們開始研究變化中的量與量的互相關系和圖形間的互相變換.在研究經典力學的過程中,微積分的方法被發明.隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展.
數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處.數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中.依據Mikhail B.Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目.此一學海的絕大部份為新的數學定理及其證明.」
Ⅱ 什麼是數學史
中國數學史
數學是中國古代科學中一門重要的學科,它的歷史悠久,成就輝煌。根據它本身發展的特點,可以分為五個時期:
①中國古代數學的萌芽;
②中國古代數學體系的形成;
③中國古代數學的發展;
④中國古代數學的繁榮;
⑤中西方數學的融合
Ⅲ 數學史的意義是什麼
數學史是研究數學發展歷史的學科,是數學的一個分支,也是自然科學史研究下屬的一個重要分支。和所有的自然科學史一樣,數學史也是自然科學和歷史科學之間的交叉學科。它所研究的內容是:
1,數學史研究方法論問題;2,總的學科發展史 ── 數學史通史;3,數學各分支的分科史(包括細小分支的歷史) ;4, 不同國家、民族、地區的數學史及其比較 ;5, 不同時期的斷代數學史 ;6, 數學家傳記 ;7, 數學思想、數學概念、數學方法發展的歷史;8,數學發展與其他科學、社會現象之間的關系;9,數學教育史;10,數學史文獻學;等
(一)科學意義及作用
每一門科學都有其發展的歷史,作為歷史上的科學,既有其歷史性又有其現實性。其現實性首先表現在科學概念與方法的延續性方面,今日的科學研究在某種程度上是對歷史上科學傳統的深化與發展,或者是對歷史上科學難題的解決,因此我們無法割裂科學現實與科學史之間的聯系。數學科學具有悠久的歷史,與自然科學相比,數學更是積累性科學,其概念和方法更具有延續性,比如古代文明中形成的十進位值制記數法和四則運演算法則。
(二)文化意義及作用
「數學不僅是一種方法、一門藝術或一種語言,數學更主要是一門有著豐富內容的知識體系,其內容對自然科學家、社會科學家、哲學家、邏輯學家和藝術家十分有用,同時影響著政治家和神學家的學說」。數學已經廣泛地影響著人類的生活和思想,是形成現代文化的主要力量。因而數學史是從一個側面反映的人類文化史,又是人類文明史的最重要的組成部分。
(三)教育意義及作用
當我們學習過數學史後,自然會有這樣的感覺:數學的發展並不合邏輯,或者說,數學發展的實際情況與我們今日所學的數學教科書很不一致。我們今日中學所學的數學內容基本上屬於17世紀微積分學以前的初等數學知識,這些數學教材業已經過千錘百煉,是在科學性與教育要求相結合的原則指導下經過反復編寫的,這樣就必然舍棄了許多數學概念和方法形成的實際背景、知識背景、演化歷程以及導致其演化的各種因素,因此僅憑數學教材的學習,難以獲得數學的原貌和全景,同時忽視了那些被歷史淘汰掉的但對現實科學或許有用的數學材料與方法,而彌補這方面不足的最好途徑就是通過數學史的學習。
中國數學有著悠久的歷史,14世紀以前一直是世界上數學最為發達的國家,出現過許多傑出數學家,取得了很多輝煌成就。由於教育上的失誤,致使接受現代數學文明熏陶的我們,往往數典忘祖,對祖國的傳統科學一無所知。數學史可以使學生了解中國古代數學的輝煌成就,了解中國近代數學落後的原因,中國現代數學研究的現狀以及與發達國家數學的差距,以激發學生的愛國熱情,振興民族科學。
Ⅳ 數學史的意義是什麼
數學史的意義
數學作為一種文化,在人類文明史上佔有特殊的地位。
首先,數學以抽象的形式,追求高度精確、可靠的知識。其次,數學作為一種創造性活動,還具有藝術的特徵,對美的追求。
數學史不是單純的數學成就的編年記錄,而是數學家在自然科學領域內克服困難、戰勝危機和發現真理的斗爭記錄。
因此,不了解數學史就不可能全面了解數學科學,也就不可能全面了解整個人類文明史。
Ⅳ 數學是怎麼產生的,它的發展歷史是什麼
產生:數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題
數學的發展史大致可以分為四個時期。
1、第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
2、第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
3、第三時期
變數數學時期。變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。
4、第四時期
現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
(5)什麼叫數學史擴展閱讀:
發展過程中研究出的數學成果:
1、李氏恆定式
數學家李善蘭在級數求和方面的研究成果,在國際上被命名為李氏恆定式。
2、華氏定理
華氏定理是我國著名數學家華羅庚的研究成果。華氏定理為:體的半自同構必是自同構自同體或反同體。數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。
Ⅵ 數學史對數學教育意義有什麼意義
數學史既屬史學領域,又屬數學科學領域,因此數學史研究既要遵循史學規律,又要遵循數理科學的規律。根據這一特點,可以將數理分析作為數學史研究的特殊的輔助手段;
在缺乏史料或史料真偽莫辨的情況下,站在現代數學的高度,對古代數學內容與方法進行數學原理分析,以達到正本清源、理論概括以及提出歷史假說的目的。數理分析實際上是「古」與「今」間的一種聯系。
數學史是一門文理交叉學科,從今天的教育現狀來看,文科與理科的鴻溝導致我們的教育所培養的人才已經越來越不能適應當今自然科學與社會科學高度滲透的現代化社會,正是由於科學史的學科交叉性才可顯示其在溝通文理科方面的作用。
通過數學史學習,可以使數學系的學生在接受數學專業訓練的同時,獲得人文科學方面的修養,文科或其它專業的學生通過數學史的學習可以了解數學概貌,獲得數理方面的修養。而歷史上數學家的業績與品德也會在青少年的人格培養上發揮十分重要的作用。
(6)什麼叫數學史擴展閱讀:
數學史的研究范圍:
按研究的范圍又可分為內史和外史:
1、內史:從數學內在的原因(包括和其他自然科學之間的關系)來研究數學發展的歷史;
2、外史:從外在的社會原因(包括政治、經濟、哲學思潮等原因)來研究數學發展與其他社會因素間的關系。
數學史和數學研究的各個分支,和社會史與文化史的各個方面都有著密切的聯系,這表明數學史具有多學科交叉與綜合性強的性質。
從研究材料上說,考古資料、歷史檔案材料、歷史上的數學原始文獻、各種歷史文獻、民族學資料、文化史資料,以及對數學家的訪問記錄,等等,都是重要的研究對象,其中數學原始文獻是最常用且最重要的第一手研究資料。
從研究目標來說,可以研究數學思想、方法、理論、概念的演變史;可以研究數學科學與人類社會的互動關系;可以研究數學思想的傳播與交流史;可以研究數學家的生平等等。
Ⅶ 數學史是如何分期的各個時期有什麼特點
數學史的分期或發展過程 數學史的分期也是講述數學史時必然會遇到的問題,它實際上設計按怎樣的線索來描述數學發展的歷史。
不同的線索將給出不同的分期,通常採用的線索如: 1.按時代順序 2.按數學對象,方法等本身的質變過程 3.按數學發展的社會背景等等。由於數學的發展是一個錯綜復雜的只是過程與社會過程,用單一的線索貫穿難免有會有偏頗,因此一般數學通史著作往往採取以某一線索為主,同時兼顧其他因素的做法。分期問題的深入討論屬於數學史專門研究的范圍,而且存在許多爭議。對數學史作出如下分期: 1.數學的起源與早期發展(公元前6世紀) 2.初等數學時期(公元前6世紀——16世紀) ①古代希臘數學(公元前6世紀——6世紀) ②中世紀東方數學(3世紀——15世紀) ③歐洲文藝復興時期(15世紀——16世紀) 3.近代數學時期(或稱變數數學建立時期,17世紀——18世紀) 4.現代數學時期(1820——現在) ①現代數學醞釀時期(1820——1870) ②現代數學形成時期(1870——1940) ③現代數學繁榮時期(或稱當代數學時期,1950——現在) 特別說明的是,關於現代數學的起始與劃分,目前分歧較大。