導航:首頁 > 數字科學 > 如何評價中國古代的數學成就

如何評價中國古代的數學成就

發布時間:2023-08-17 04:29:52

⑴ 中國古代數學家成就及其貢獻

早期中國數學和世界其它地方的數學有很大的不同,因此可以合理的認為是獨立發展的。現存最古老的中國數學文獻是《周髀算經》,成書年代有很多說法,從公元前 1200 年到公元前 100 年都有。中國現存最古老的幾何學作品來自《墨經》,由墨子的弟子編撰。《墨經》涉及了很多物理科學的領域,也講解了少量的幾何定理。

《九章算術》為現存最古老的中國數學著作之一。該書完整的標題首次出現在公元 179 年,但在這之前也有文獻提到過該書的部分。《九章算術》包括了 246 個應用題,包含了農業、商業、求塔的高度、工程學和測繪學。它還證明了勾股定理,以及高斯消元的公式。勾股定理即為西方的畢達哥拉斯定理,描述了直角三角形中三條邊長度的關系。

三國時代數學家劉徽的割圓術是中國古代數學中一個重要的成就。劉徽是中國數學史上最早創造出一個從數學上計算圓周率到任意精確度的迭代程序。他自己通過分割圓為 192 邊形,計算出圓周率在 3.14 與 3.142704 之間。後來劉徽發明一種快捷演算法,可以只用 96 邊形得到和 1536 邊形同等的精確度,得到圓周率近似為 3.1416。因為劉徽割圓術簡單而又嚴謹,富於程序性,可以繼續分割下去,而求得更精確的圓周率。南北朝時期著名數學家祖沖之用劉徽割圓術計算 11 次,分割圓為 12288 邊形,得圓周率 3.1415926,成為此後千年世界上最准確的圓周率。劉徽割圓術雖然不是世界最早,卻是數學史上最嚴謹簡潔的割圓術。比阿基米德割圓術更簡潔,比托勒密 (Claudius Ptolemaeus) 割圓術更嚴謹。

中國數學的最高峰出現在 13 世紀宋朝,此時代數學得到了極大的發展。其中最重要的著作是朱世傑的《四元玉鑒》。書中記載了研究一元高次方程組的解的方法,後稱為秦九韶演算法,即後世歐洲的霍納演算法 (Horner's method)。前蘇聯數學史家尤什克維奇說 「這是中國傳統數學最偉大成就之一」。

中國古代數學被世界所公認的最卓越發現是孫子定理,在全世界的代數學教科書中亦稱為中國剩餘定理 (Chinese remainder theorem)。中國南北朝時期 (公元5世紀) 的數學著作《孫子算經》卷下第二十六題,叫做 「物不知數」 問題,原文如下:
有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二。問物幾何?
即:一個整數除以三餘二,除以五餘三,除以七餘二,求這個整數。《孫子算經》中首次提到了這種一元線性同餘方程組的問題,以及以上具體問題的解法。而這種同餘問題直到 1801 年才被偉大的天才德國數學家高斯在其名著 《算術研究》中研究並用來計算復活節的日期。

⑵ 試述中國古代數學的特點

3 中國古代數學思想特點
(1). (實用性)《九章算術》收集的每個問題都是與生產實踐有聯系的應用題,以解決問題為目的.從《九章算術》開始,中國古典數學著作的內容,幾乎都與當時社會生活的實際需要有著密切的聯系.這不僅表現在中國的算學經典基本上都遵從問題集解的體例編纂而成,而且它所涉及的內容反映了當時社會政治、經濟、軍事、文化等方面的某些實際情況和需要,以致史學家們常常把古代數學典籍作為研究中國古代社會經濟生活、典章制度(特別是度量衡制度),以及工程技術(例如土木建築、地圖測繪)等方面的珍貴史料.而明代中期以後興起的珠算著作,所論則更是直接應用於商業等方面的計算技術.中國古代數學典籍具有濃厚的應用數學色彩,在中國古代數學發展的漫長歷史中,應用始終是數學的主題,而且中國古代數學的應用領域十分廣泛,著名的十大算經清楚地表明了這一點,同時也表明「實用性」又是中國古代數學合理性的衡量標准.這與古代希臘數學追求純粹「理性」形成強烈的對照.其實,中國古代數學一開始就同天文歷法結下了不解之緣.中算史上許多具有世界意義的傑出成就就是來自歷法推算的.例如,舉世聞名的「大衍求一術」(一次同餘式組解法)產於歷法上元積年的推算,由於推算日、月、五星行度的需要中算家創立了「招差術」(高次內插法);而由於調整歷法數據的要求,歷算家發展了分數近似法.所以,實用性是中國傳統數學的特點之一.
(2).(演算法程序化)中國傳統數學的實用性,決定了他以解決實際問題和提高計算技術為其主要目標.不管是解決問題的方式還是具體的演算法,中國數學都具有程序性的特點.中國古代的計算工具是算籌,籌算是以算籌為計算工具來記數,列式和進行各種演算的方法.有人曾經將中國傳統數學與今天的計算技術對比,認為算籌相應於電子計算機可以看作「硬體」,那麼中國古代的「算術」可以比做電子計算機計算的程序設計,是一種軟體的思想.這種看法是很有道理的.中國的籌算不用運算符號,無須保留運算的中間過程,只要求通過籌式的逐步變換而最終獲得問題的解答.因此,中國古代數學著作中的「術」,都是用一套一套的「程序語言」所描寫的程序化演算法.各種不同的籌法都有其基本的變換法則和固定的演算程序.中算家善於運用演算的對稱性、循環性等特點,將演算程序設計得十分簡捷而巧妙.如果說古希臘的數學家以發現數學的定理為目標,那麼中算家則以創造精緻的演算法為已任.這種設計等式、演算法之風氣在中算史上長盛不衰,清代李銳所設計的「調日法術」和「求強弱術」等都可以說是我國古代傳統的遺風. 古代數學大體可以分為兩種不同的類型:一種是長於邏輯推理,一種是發展計算方法.這也大致代表了西方數學和東方數學的不同特色.雖然以算為主的某些特點也為東方的古代印度數學和中世紀的阿拉伯數學所具有,但是,中國傳統數學在這方面更具有典型性.中算對於算具的依賴性和形成一整套程序化的特點尤為突出.例如,印度和阿拉伯在歷史上雖然也使用過土盤等算具,但都是輔助性的,主要還是使用筆算,與中國長期使用的算籌和珠算的情形大不相同,自然也沒有形成像中國這樣一貫的與「硬體」相對應的整套「軟體」.
(3).(模型化)「數學模型」是針對或參照某種事物系統的特徵或數量關系,採用形式話數學語言,概括的近似地表達出來的一種數學結構.古代的數學模型當然沒有這樣嚴格,但如果不要求「形式化的數學語言」,對「數學結構」也作簡單化的解釋,則仍然可以應用這個定義.按此定義,數學模型與現實世界的事物有著不可分割的關系,與之有關的現實事物叫做現實原形,是為解釋原型的問題才建立應用數學模型的.《九章算術》中大多數問題都具有一般性解法,是一類問題的模型,同類問題可以按同種方法解出.其實,以問題為中心、以演算法為基礎,主要依靠歸納思維建立數學模型,強調基本法則及其推廣,是中國傳統數學思想的精髓之一.中國傳統數學的實用性,要求數學研究的結果能對各種實際問題進行分類,對每類問題給出統一的解法;以歸納為主的思維方式和以問題為中心的研究方式,傾向於建立基本問題的結構與解題模式,一般問題則被化歸、分解為基本問題解決.由於中國傳統數學未能建立起一套抽象的數學符號系統,對一般原理、法則的敘述一方面是藉助文辭,一方面是通過具體問題的解題過程加以演示,使具體問題成為相應的數學模型.這種模型雖然和現代的數學模型有一定的區別,但二者在本質上是一樣的.
(4).(寓理於算)由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次上而無理論建樹.其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等.
中國古代數學的特點雖然在一定的程度上促進了其自身的發展,但正是因為這其中的某些特點,中國古代數學走向了低谷.
4 中國古代數學由興轉衰的原因分析
(1).獨尊儒術,蔑視邏輯.漢武帝時,「罷黜百家,獨尊儒術」使得當時注重形式邏輯的墨子思想未能得到繼承和發展.儒家思想講究簡約,而忽視了邏輯思維的過程.這一點從中國古代的典籍中能找到最准確的說明.《周髀算經》中雖然給出了勾股定理,但卻沒給出證明.《九章算術》同樣只在給出題目的同時,給出一個結果和計算的程式,對其中的邏輯思維卻沒有去說明.中國古代數學這種只注重計算形式(即古代數學家所謂的「術」)與過程,不注重邏輯思維的做法,在很長一段時間里禁錮了中國古代數學發展.這種情況的出現當然也有其原因,中國古代傳統數學主要是在算籌的基礎上發展起來的,後來發展到以算盤為工具的計算時代,但是這些工具的使用在另一方面為中國人提供了一種程式化的求解方法,從而忽視了其中的邏輯思維過程.此外,中國傳統數學講究「寓理於算」.即使高度發達的宋元數學也是如此.數學書是由一系列的數學問題組成的.你也可以稱它們為「習題解集」.數學理論以『術」的形式出現.早期的「術」只有一個過程,後人就紛紛為它們作注,而這些注釋也很簡約.實際上就是舉例「說明」,至於說明了什麼,條件變一下怎麼辦,就要讀者自已去總結了,從來不會給你一套系統的理論.這是一種相對原始的做法.但隨著數學的發展,這種做法的局限性就表現出來了,它極不利於知識的總結.如果只有很少一點數學知識,那麼,問題還不嚴重,但隨著數學知識的增長,每個知識點都用一個題目來包裝,而不把它們總結出來就難以從整體上去把握這些知識.這無論對學習數學還是研究,發展數學都是不利的.
(2). 崇尚玄學,迷信數術,歪曲數學思想.魏晉時期,儒學雖然受到一定的沖擊,但其統治地位並未受到動搖.老莊學說和儒家學說相反相成便形成了玄學.玄學原本探究的是有關人生的哲學,但後來與數學混在了一起.古人曾就常常以玄術來解釋數學問題,使得數學概念和方法遭到歪曲.張衡是我國著名科學家.當時他雖然已經知道圓周率「周一徑三」不準確,但由於他始終相信「周一徑三」來源於「參天兩地」的說法,一直沒深入探究,因而未能將圓周率推算到更精確的地步,這不能不說是一大遺憾.當玄術和數術充塞數學時,數學已經明顯存有落後的隱患.
(3). 故步自封,墨守成規,拒絕數學符號.中國古代數學是以漢語描述的,歷來不重視漢字以外的數學符號,給邏輯思維帶來很大的困難,使我國長期不能形成演繹推理的傳統,嚴重影響了我國數學的發展.從明朝開始,中國就走上了閉關鎖國的道路.這種行為與小農思想相適應,早在秦代就已經出現端倪,建一條長城將自己圍起來,對外面的東西不聞不問.相比之下,西方在度過了中世紀的黑暗時期後,進入了文藝復興時期.歐洲的擴張、航海技術開闊了西方人的眼界,同時也大大推動了數學的發展.在18世紀的改革和動盪中,新出現的資產階級推翻了英、法的君主政治.封建的政治、社會和經濟思想被經典的自由主義哲學所取代,這種哲學促進了19世紀的工業革命.社會生產力的提高成了西方數學發展的源源不斷的動力.最終,近代的數學在西方被建立起來,而曾是數學大國之一的中國,在其中卻無所作為.
(4). 此外,中國長期處於封建社會,遲遲未能進入資本主義階段,也是導致中國古代數學發展停頓的直接原因.從整體上看,數學是與所處的社會生產力相適應的.中國社會長期處於封閉的小農經濟環境,生產力低下,不僅沒有工業,商業也不發達.整個社會對數學沒有太高的要求, 自然研究數學的人也就少了. 恩格斯說,天文學和力學是推動數學發展的動力,而在當時的中國這種動力已趨近枯竭.

⑶ 談談中國古代的數學成就

1、等間距二次內插公式。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,唐代僧一行在其《大銜歷》中將其發展為不等間距二次內插公式。

2、測量太陽高度。陳子是周代的天文算學家,榮方是當時天文算學家的愛好者。陳子測量:太陽高度的方法可敘述為:當夏至太陽直射北回歸線時,在北方立一8尺高的標竿,觀其影長為6尺。

3、勾股定理。據《周髀算經》記載, 「故折矩以為句廣三,股 四,徑隅五。既方其外,半之者,此數之所由生也。」去,政頁井盤、得三、四、五。兩矩共長二十有五,是調積絕。

4、割圓術。所謂「割圓術」,是用圓內接正多邊形的周長去無限逼近圓周並以此求取圓周率的方法。這個方法,是劉徽在批判總結了數學史上各種舊的計算方法之後,經過深思熟慮才創造出來的一種嶄新的方法。

5、圓周率。魏晉時, 劉徽曾用使正多邊形的邊數逐漸增加去逼近圓周的方法(即「割圓術」),求得π 的近似值3. 1416。

(3)如何評價中國古代的數學成就擴展閱讀:

1、在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).

2、算術是數學中最古老、最基礎和最初等的部分,它研究數的性質及其運算。把數和數的性質、數和數之間的四則運算在應用過程中的經驗累積起來,並加以整理,就形成了最古老的一門數學——算術。

閱讀全文

與如何評價中國古代的數學成就相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:698
乙酸乙酯化學式怎麼算 瀏覽:1367
沈陽初中的數學是什麼版本的 瀏覽:1313
華為手機家人共享如何查看地理位置 瀏覽:1006
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:843
數學c什麼意思是什麼意思是什麼 瀏覽:1364
中考初中地理如何補 瀏覽:1255
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:666
數學奧數卡怎麼辦 瀏覽:1344
如何回答地理是什麼 瀏覽:986
win7如何刪除電腦文件瀏覽歷史 瀏覽:1017
大學物理實驗干什麼用的到 瀏覽:1443
二年級上冊數學框框怎麼填 瀏覽:1655
西安瑞禧生物科技有限公司怎麼樣 瀏覽:810
武大的分析化學怎麼樣 瀏覽:1207
ige電化學發光偏高怎麼辦 瀏覽:1295
學而思初中英語和語文怎麼樣 瀏覽:1601
下列哪個水飛薊素化學結構 瀏覽:1382
化學理學哪些專業好 瀏覽:1447
數學中的棱的意思是什麼 瀏覽:1013