導航:首頁 > 數字科學 > 大學數學系主要涉及哪些方面

大學數學系主要涉及哪些方面

發布時間:2023-08-18 12:40:35

A. 數學系要學哪些專業課程

數學專業的專業課程有:

一、數學分析

又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。

數學中的分析分支是專門研究實數與復數及其函數的數學分支。它的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。

二、高等代數

初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。

發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。

三、復變函數論

復變函數論是數學中一個基本的分支學科,它的研究對象是復變數的函數。復變函數論歷史悠久,內容豐富,理論十分完美。它在數學許多分支、力學以及工程技術科學中有著廣泛的應用。 復數起源於求代數方程的根。

復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。

四、抽象代數

抽象代數(Abstract algebra)又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。

他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。

五、近世代數

近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。初等代數學是指19世紀上半葉以前發展的代數方程理論,主要研究某一代數方程(組)是否可解,如何求出代數方程所有的根〔包括近似根〕,以及代數方程的根有何性質等問題。

法國數學家伽羅瓦在1832年運用「群」的思想徹底解決了用根式求解多項式方程的可能性問題。他是第一個提出「群」的思想的數學家,一般稱他為近世代數創始人。他使代數學由作為解代數方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數即近世代數時期。

參考資料來源:

網路—數學分析

網路—高等代數

網路—復變函數論

網路—抽象代數

網路—近世代數

B. 大學的數學專業都學什麼啊

主要學習如下課程:

數學分析、高等代數、高等數學、解析幾何、微分幾何、高等幾何、常微分方程、偏微分方程、概率論與數理統計、復變函數論、實變函數論、抽象代數、近世代數、數論、泛函分析、拓撲學、模糊數學。師范類還要學習數學教育學等。

數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。

(2)大學數學系主要涉及哪些方面擴展閱讀

概率和統計:

作為數學的分支,概率學是研究隨機事件的一門科學技術,涉及工程、生物學、化學、遺傳學、博弈論、經濟學等多方面的應用,幾乎遍及所有的科學技術領域,可以說是各種預測的基石。

概率論與數理統計是本世紀迅速發展的學科,研究各種隨機現象的本質與內在規律性以及自然科學、社會科學等各個學科中各種類型數據的科學的綜合處理及統計推斷方法。

C. 大學數學專業都有哪些課程

按專業以後的發展喊知方向來分:

1、純粹的數學專業主幹課程:初等數論、概率論與數理統計、數學教學論、小學數學教材教法、數學分析選講、復變函數、近世代數、高等代數選講、數學教育學等、數學與應用數學。

2、應用數學主要課程灶滲迅:分析學、代數學、幾何學、概率論、物理學、數學模型、數學實驗、計算機基礎、數值方法、數學史等,以及根據應用方向選擇的基本課程。

3、信息與計算科學專業主要課程:數學分析、高等代數、幾何、概率統計、數學模型、離散數學、模糊數學、實變函數、復隱此變函數、微分方程、物理學、信息處理、信息編碼與信息安全、現代密碼學教程、計算智能、計算機科學基礎、數值計算方法、數據挖掘、最優化理論、運籌學、計算機組成原理、計算機網路、計算機圖形學、c/c++語言、java語言、匯編語言、演算法與數據結構、資料庫應用技術、軟體系統、操作系統等。

D. 大學本科數學專業的,都要學哪些科目

專業基礎課有數學分析、高等代數、解析幾何、概率論與數理統計:這三者是老三門,將來如果考研時要用到的。

近代數學的新三門是:拓撲學、實變函數與泛函分析、近世代數(也叫抽象代數)。

另外其他的一些常見的分支包括復變函數、常微分、運籌、最優化,數學模型。

E. 大學數學專業學什麼課程

大學數學專業是基礎學科,一般人還真學不來。於是有同學問大學數學專業學些什麼課程呢?下面是由我為大家整理的「大學數學專業學什麼課程」,僅供參考,歡迎大家閱讀。

大學數學專業學什麼課程

"數學類"專業類屬於理學門類,涵蓋了四個專業,分別有「數學與應用數學」、「信息與計算科學」、「數理基礎科學」、「數據計禪棗罩算及應用」。大學是一個從過度的過程,是以在剛進入大學大一階段時並不會學難度系數過高的課程,通常大學數學專業學的有《解析幾何》、《高等代數》、《概率論於數據統計》和《微分幾何》等課程。

1、《高等數學》,主要內容是極限→導數→微積分,導數類似求曲線切線的斜率,微積分類賀鬧似於求不規則圖形的面積

2、《線性代數》,它的研究對象是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。學會了可以求多元方程組

3、《概率論》,研究隨機現象數量規律。學會了可以研究事情發生的各種可能性

4、《統計學》,主要通過建立數學模型,收集數據,進行量化的分析、總結,並進而進行推斷和預測,為相關決策提供依據和參考。

概率論和統計學視專業情況而定,有些專業是不用學的。

拓展閱讀:數學師范類都學啥

需要學習的專業課有:《數學分析》、《高等代數》、《概率與數理統計》、《解析幾何》、《復變函數》、《實變函數》、《拓撲學》、《常微分方程》、《泛函分析》等等,開設的專業課因校而異,但主要的《數學分析》和《高等代數》是都有的。其他非專業課包括很多,同樣也是因學校的不同而不同,主要有:《大學英語》、《法律基礎》、《心理學》、《教育學》、《體育》等等,選修課就要看自己的愛好了。

出來以後不一定只當老師的,要看學到什麼程度了。只是本科畢業的話,主要就是從事教師行業,如果學到碩士甚至博士畢業,就可以進大型企業或者研究所之類的機構了。數學是很有用的,學好了數學其他的學科再學起來就容易多了。

數學好上大學選擇什麼專業合適

合適的專業:

1、數學與應用數學專業:培養掌握數學科學的基本理論與基本方法,具備運用數學知識、使用計算機解決實際問題的能力,受到科學研究的初步訓練,能在科技、教育和經濟部門從事研究、教學工作或在生產經營及管理部門從事實際應用、開發研究和管理工作的高級專門人才。

2、信息與計算科學專業:通過資訊理論、科學計算、運籌學等方面的基礎知識教育和建立數學模型、數學實踐課、專業實習各環節的訓練,著重培養學生解決科學計算、軟體開發和設計、信息處理與編碼等實際問題的能力,培養能勝任信息處理、科學與工程計算部門工作的高級專門人才。

3、數理基礎科學專業:主要培養能從事數岩棗學、物理等基礎科學教學和科研的有發展潛力的優秀人才,尤其是在數學、物理上具有創新的能力的人才,同時也為對數理基礎要求高的其它學科培養有良好的數理基礎的新型人才。

F. 大學數學專業都有哪些課程要詳細

專業基礎課有數學分析、高等代數、解析幾何、概率論與數理統計。這三者是老三門,將來如果考研時要用到的。近代數學的新三門是拓撲學、實變函數與泛函分析、近世代數(也叫抽象代數)。另外其他的一些常見的包括數學分析、微分幾何、高等幾何、常微分方程、偏微分方程、復變函數論、實變函數論、抽象代數、近世代數、數論、泛函分析、拓撲學、模糊數學。

拓展資料:

1.數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學的基本要素是:邏輯和直觀、分析和推理、共性和個性。

2.數學專業培養德、智、體、美全面發展的掌握數學與應用數學科學的基本理論、基礎知識和基本方法,能夠運用數學知識和使用計算機解決若干實際數學問題,具有現代教育觀念,適應教育改革需要,以及具有良好的知識更新能力和創新能力的中等學校數學師資和教育、教學管理工作及科學研究的專門人才。

3.計算數學是伴隨著計算機的出現而迅猛發展起來的新學科,涉及計算物理、計算化學、計算力學、計算材料學、環境科學、地球科學、金融保險等眾多交叉學科。它運用現代數學理論與方法解決各類科學與工程問題,分析和提高計算的可靠性、有效性和精確性,研究各類數值軟體的開發技術。既突出了解決信息、電子與計算機領域中的某些核心理論技術問題,又注意到從這些高新技術中抽象出新的數學理論;在保持應用數學與計算數學主體研究方向優勢的基礎上,重視並加強信息科學的數學基礎、數據分析與統計計算、科學計算、現代優化、電子系統的數值模擬、生物系統的數學建模等研究。

G. 大學數學主要學的是些什麼內容

大學的數學學習內容屬於高等數學,主要的內容有:

1、極限

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。極限是解決高等數學問題的基礎。

2、微積分

微積分是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科,在許多領域都有重要的應用。

3、空間解析幾何

藉助矢量的概念可使幾何更便於應用到某些自然科學與技術領域中去,因此,空間解析幾何介紹空間坐標系後,緊接著介紹矢量的概念及其代數運算。

(7)大學數學系主要涉及哪些方面擴展閱讀

歷史發展

一般認為,16世紀以前發展起來的各個數學學科總的是屬於初等數學的范疇,因而,17世紀以後建立的數學學科基本上都是高等數學的內容。由此可見,高等數學的范疇無法用簡單的幾句話或列舉其所含分支學科來說明。

19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。

分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。

H. 大學數學系都學什麼

數學系的主要課程有:數學分析、高等代數、解析幾何、普通物理、概率論、數學建模、近世代數、高等幾何、微分幾何、常微分方程、復變函數、實變函數、初等數學研究、數學實驗等。

一、應用數學的概念:

應用數學是應用性較強的諸數學學科或分支的統稱。

泛指一切數學理論和方法中應用性較強的部分。

二、培養方向:

該專業培養掌握數學科學的基本理論與基本方法,具備運用數學知識、使用計算機解決實際問題的能力,受到科學研究的初步訓練,能在科技、教育和經濟部門從事研究、教學工作或在生產經營及管理部門從事實際應用、開發研究和管理工作的高級專門人才。

三、專業介紹:

該專業旨在培養數學與應用數學的高素質拔尖人才,培養現代數學頂峰的攀登者,培養在我國現代化建設中擔當大任的數學和應用數學領軍人物。

在課程設置上,尤其在一、二年級,強調正規扎實的數學基礎訓練,為學生將來成才和多方向的發展奠定堅實寬廣的根基。

同時引導學生深入到數學最重要的分支,接觸現代數學思想和框架,拓寬知識領域,激發求知和探索興趣。

在積極向上,寬松自由的環境中,培養學生高度的創新意識和能力,達到專與博、嚴與活的高度和諧統一。

該專業含數學、應用數學、概率統計三個方向,學生可以選修不同側重的課程。

除開設國內一流的標準的數學課程之外,還根據師資優勢和數學發展,在現代數論、代數、幾何、分析、微分方程、概率統計及計算機科學等方面,開設了有特色的系列課程。

閱讀全文

與大學數學系主要涉及哪些方面相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:721
乙酸乙酯化學式怎麼算 瀏覽:1387
沈陽初中的數學是什麼版本的 瀏覽:1332
華為手機家人共享如何查看地理位置 瀏覽:1025
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:865
數學c什麼意思是什麼意思是什麼 瀏覽:1387
中考初中地理如何補 瀏覽:1276
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:683
數學奧數卡怎麼辦 瀏覽:1365
如何回答地理是什麼 瀏覽:1003
win7如何刪除電腦文件瀏覽歷史 瀏覽:1035
大學物理實驗干什麼用的到 瀏覽:1464
二年級上冊數學框框怎麼填 瀏覽:1678
西安瑞禧生物科技有限公司怎麼樣 瀏覽:900
武大的分析化學怎麼樣 瀏覽:1229
ige電化學發光偏高怎麼辦 瀏覽:1318
學而思初中英語和語文怎麼樣 瀏覽:1625
下列哪個水飛薊素化學結構 瀏覽:1407
化學理學哪些專業好 瀏覽:1470
數學中的棱的意思是什麼 瀏覽:1035