『壹』 數學集合中,N,N*,Z,Q,R,C分別是什麼意思
1、全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N
2、非負整數集內排除0的集,也稱正整數集,記作N+(或N*)
3、全體整數的集合通常稱作整數集,記作Z
4、全體有理數的集合通常簡稱有理數集,記作Q
5、全體實數的集合通常簡稱實數集,記作R
6、復數集合計作C
(1)高中數學合集中r代表什麼區別擴展閱讀
一、集合的運算:
1、集合交換律:
A∩B=B∩A
A∪B=B∪A
2、集合結合律:
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3、集合分配律:
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
二、集合的表示方法:常用的有列舉法和描述法。
1、列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……}
2、描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π}
3、圖式法(Venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。
『貳』 在集合中R、Q、Z、N、N*分別是什麼意思
R實數集合。
Q有理數集合。
Z整數集合。
N自然數集合。
N*正整數集合。
實數集,包含所有有理數和無理數的集合,通常用大寫字母R表示。18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。任何一個非空有上界的集合(包含於R)必有上確界。
有理數集,即由所有有理數所構成的集合,用黑體字母Q表示。有理數集是實數集的子集。有理數集是一個無窮集,不存在最大值或最小值。
由全體整數組成的集合叫整數集。它包括全體正整數、全體負整數和零。數學中整數集通常用Z來表示。
(2)高中數學合集中r代表什麼區別擴展閱讀:
其他:
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
N*或N+:正整數集合{1,2,3,…}
Q+:正有理數集合
Q-:負有理數集合
『叄』 高一數學中N、R、Z、Q、Z*、N*各代表什麼意思
N全體非負整數(或自然數)組成的集合;R是實數集;Z是整數集;Q是有理數集;Z*是正整數集;N*是正整數集。
集合及運算的概念
集合:一般的,一定范圍內某些確定的,不同的對象的全體構成一個集合。
子集:對於兩個集合A和B,如果集合A中的任意一個元素都是集合B中的元素,我們就說這兩個集合有包含關系,稱集合A是集合B的子集,記作A⊆B讀作A包含於B。
空集:不含任何元素的集合叫做空集。記為Φ。
集合的三要素:確定性、互異性、無序性。
集合的表示方法:列舉法、描述法、視圖法、區間法。
集合的分類:(按集合中元素個數多少分為:)有限集、無限集、空集。
(3)高中數學合集中r代表什麼區別擴展閱讀:
集合的運算性質
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,則A=B,A⊇B,B⊇C,則A⊇C。
常用結論
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。
『肆』 常用數集中的N,Z,Q,R分別指什麼集
所有正整數組成的集合稱為正整數集,記作N*,Z+或N+;
全體非負整數組成的集合稱為非負整數集(或自然數集),記作N;
全體整數組成的集合稱為整數集,記作Z;
全體有理數組成的集合稱為有理數集,記作Q;
全體實數組成的集合稱為實數集,記作R;
全體虛數組成的集合稱為虛數集,記作I;
全體實數和虛數組成的復數的集合稱為復數集,記作C。
『伍』 高中數學裡面我們常用到的N,R、等各表示什麼 如X屬於R, 還有哪些表示數字請具體說下
N表示正整數(包括0)集合
N*表示正整數(不包括0)集合
R表示實數集合
R+表示正實數集合
R-表示負實數集合
R*表示非零實數集合
Z表示全體整數集合
Q表示有理數集合
『陸』 R在集合中代表什麼
R在集合中代表實數集。
實數集通俗地認為,通常包含所有有理數和無理數的集合就是實數集,通常用大寫字母R表示。18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。任何一個非空有上界的集合(包含於R)必有上確界。
同時集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。
(6)高中數學合集中r代表什麼區別擴展閱讀
R集合的加法定理:
1、對於任意屬於集合R的元素a、b,可以定義它們的加法a+b,且a+b屬於R;
2、加法有恆元0,且a+0=0+a=a(從而存在相反數);
3、加法有交換律,a+b=b+a;
4、加法有結合律,(a+b)+c=a+(b+c)。
R集合的乘法定理:
1、對於任意屬於集合R的元素a、b,可以定義它們的乘法a·b,且a·b屬於R;
2、乘法有恆元1,且a·1=1·a=a(從而除0外存在倒數);
3、乘法有交換律,a·b=b·a;
4、乘法有結合律,(a·b)·c=a·(b·c);
5、乘法對加法有分配率,即a·(b+c)=(b+c)·a=a·b+a·c。
『柒』 高一數學中N,R,Z,Q,Z*,N*各代表什麼意思
N全體非負整數(或自然數)組成的集合;R是實數集;Z是整數集;Q是有理數集;Z*是正整數集;N*是正整數集。
集合語言是現代數學的基本語言,可以簡潔、准確、規范的表達數學內容.本節學習集合的一些基本知識,用最基本的集合語言表示有關數學對象和數學問題等,並能在自然語言、圖形語言、集合語言之間進行轉換。
(7)高中數學合集中r代表什麼區別擴展閱讀
在不同場合,同一語詞可以表達集合概念,也可以不表達集合概念。如:「人」,在「人是由猿轉化而來的」這一判斷中,「人」是集合概念,因為不是每一個人都具有由猿轉化的性質; 在「張三是人」這一判斷中,「人」是非集合概念,表示人這一類動物或其中一分子。
區別某個語詞是否表達集合概念,須結合語言環境而定,即需要把某一領域的每一個對象與概念反映的性質聯系起來考察。准確區分集合概念與非集合概念,有助於避免犯混淆概念的邏輯錯誤。