導航:首頁 > 數字科學 > 什麼數學符號代表不清

什麼數學符號代表不清

發布時間:2023-08-19 01:08:48

❶ 數學符號都表示什麼怎麼讀

運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

關系符號:如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號。

「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。

「→」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號。

「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。

結合符號:如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」,比如。

性質符號:如正號「+」,負號「-」,正負號「」(以及與之對應使用的負正號「」)。

省略符號:如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),∵因為∴所以。

總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數(n元素的總個數;r參與選擇的元素個數),冪等。

排列組合符號:C組合數、A(或P)排列數、n元素的總個數、r參與選擇的元素個數、!階乘,如5!=5×4×3×2×1=120,規定0!=1、!!半階乘(又稱雙階乘)。

例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。

離散數學符號:∀全稱量、∃存在量詞、├斷定符(公式在L中可證)、╞滿足符(公式在E上有效,公式在E上可滿足)、﹁命題的「非」運算。

如命題的否定為﹁p、∧命題的「合取」(「與」)運算、∨命題的「析取」(「或」,「可兼或」)運算、→命題的「條件」運算。

↔命題的「雙條件」運算的、p<=>q命題p與q的等價關系、p=>q命題p與q的蘊涵關系(p是q的充分條件,q是p的必要條件)、A*公式A的對偶公式,或表示A的數論倒數(此時亦可寫為)。

wff合式公式:iff當且僅當、↑命題的「與非」運算(「與非門」)、↓命題的「或非」運算(「或非門」)、□模態詞「必然」、◇模態詞「可能」、∅空集、∈屬於(如"A∈B",即「A屬於B」)、∉不屬於、P(A)集合A的冪集。

|A|集合A的點數、R²=R○R[R、=R、○R]關系R的「復合」、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,還有相應的⊄,⊈,⊉等。

∪集合的並運算:U(P)表示P的領域、∩集合的交運算、-或集合的差運算、⊕集合的對稱差運算、〡限制、集合關於關系R的等價類。

A/R集合A上關於R的商集、[a]元素a產生的循環群、I環,理想、Z/(n)模n的同餘類集合、r(R)關系R的自反閉包。

s(R)關系R的對稱閉包、CP命題演繹的定理(CP規則)、EG存在推廣規則(存在量詞引入規則)、ES存在量詞特指規則(存在量詞消去規則)、UG全稱推廣規則(全稱量詞引入規則)、US全稱特指規則(全稱量詞消去規則)。

(1)什麼數學符號代表不清擴展閱讀:

更多數學表達符號:

∞無窮大、π圓周率、|x|絕對值、∪並集、∩交集、≥大於等於、≤小於等於、≡恆等於或同餘、ln(x)以e為底的對數、lg(x)以10為底的對數、floor(x)上取整函數、ceil(x)下取整函數。

xmody求余數、x-floor(x)小數部分、∫f(x)dx不定積分、∫[a:b]f(x)dxa到b的定積分、f(x)函數f在自變數x處的值、sin(x)在自變數x處的正弦函數值、exp(x)在自變數x處的指數函數值,常被寫作ex、logba以b為底a的對數。

cosx在自變數x處餘弦函數的值、tanx其值等於sinx/cosx、cotx餘切函數的值或cosx/sinx、secx正割含數的值,其值等於1/cosx、cscx餘割函數的值,其值等於1/sinx、asinxy正弦函數反函數在x處的值,即x=siny。

acosxy餘弦函數反函數在x處的值,即x=cosy、atanxy正切函數反函數在x處的值,即x=tany、acotxy餘切函數反函數在x處的值,即x=coty、asecxy正割函數反函數在x處的值,即x=secy、acscxy餘割函數反函數在x處的值,即x=cscy。

❷ 數學上的符號都代表什麼意思

數學集合符號都有:N、N+、Z、Q、R、C等。具體介紹如下:

1、全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N。

2、非負整數集內排除0的集,也稱正整數集,記作N+(或N*)。

3、全體整數的集合通常稱作整數集,記作Z。

4、全體有理數的集合通常簡稱有理數集,記作Q。

5、全體實數的集合通常簡稱實數集,記作R。

6、復數集合計作C。

(2)什麼數學符號代表不清擴展閱讀:

1、集合,是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。例如全中國人的集合,它的元素就是每一個中國人。我們通常用大寫字母如A,B,S,T,...表示集合,而用小寫字母如a,b,x,y,...表示集合的元素。

2、元素與集合的關系有:「屬於」與「不屬於」兩種。

3、集合的運算:

(1)集合交換律:A∩B=B∩A;A∪B=B∪A。

(2)集合結合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。

(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。

❸ 數學符號是什麼符號

數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現代數學常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。

運算符號

如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

關系符號

如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢等。

(3)什麼數學符號代表不清擴展閱讀:

數學符號的發展:

例如加號曾經有好幾種,現代數學通用「+」號。「+」號是由拉文「et」(「和」的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文「plu」(「加」的意思)的第一個字母表示加,草為「μ」最後都變成了「+」號。「-」號是從拉丁文「minus」(「減」的意思)演變來的,一開始簡寫為m,再因快速書寫而簡化為「-」了。

也有人說,賣酒的商人用「-」表示酒桶里的酒賣了多少。以後,當把新酒灌入大桶的時候,就在「-」上加一豎,意思是把原線條勾銷,這樣就成了個「+」號。到了十五世紀,德國數學家魏德美正式確定:「+」用作加號,「-」用作減號。

乘號曾經用過十幾種,現代數學通用兩種。一個是「×」,最早是英國數學家奧屈特1631年提出的;一個是「·」,最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:「×」號像拉丁字母「X」,可能引起混淆而加以反對,並贊成用「·」號(事實上點乘在某些情況下亦易與小數點相混淆)。後來他還提出用「∩「表示相乘。這個符號在現代已應用到集合論中了。

❹ 數學符號有哪些呢

內容如下:

1、幾何學符號:⊥∥∠⌒⊙≡(恆等於或同餘)≌△(三角形)∽(相似)。

2、代數符號:∝∧∨~∫∮≠≤(小於等於)≥(大於等於)≈∞(無窮大)。

3、集合符號:∪(集合並)∩(集合交)∈。

4、特殊符號:∑π(圓周率)。

5、推理符號:↑→←↓↖↗↘↙。

符號的作用

一個符號不僅是普遍的,而且是極其多變。可以用不同的語言表達同樣的意思,也可以在同一種語言內,用不同的詞表達某種思想和觀念。「真正的人類符號並不體現在它的一律性上,而是體現在它的多面性上,而是靈活多變的」。卡西爾認為,正是符號的這三大特性使符號超越於信號。

人的「符號」不是「事實性的」而是「理想性的」,人類意義世界的一部分。信號是「操作者」,而符號是「指稱者」,信號有著某種物理或實體性的存在,而符號是觀念性的,意義性的存在,具有功能性的價值。

❺ 數學所有符號解釋大全

(1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏。

(2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。

(3)關系符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。

(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」

(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」

(6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C ),冪(aM),階乘(!)等。

符號 意義
∞ 無窮大
PI 圓周率
|x| 函數的絕對值
∪ 集合並
∩ 集合交
≥ 大於等於
≤ 小於等於
≡ 恆等於或同餘
ln(x) 以e為底的對數
lg(x) 以10為底的對數
floor(x) 上取整函數
ceil(x) 下取整函數
x mod y 求余數
小數部分 x - floor(x)
∫f(x)δx 不定積分
∫[a:b]f(x)δx a到b的定積分

P為真等於1否則等於0
∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求極限
f(z) f關於z的m階導函數
C(n:m) 組合數,n中取m
P(n:m) 排列數
m|n m整除n
m⊥n m與n互質
a ∈ A a屬於集合A
#A 集合A中的元素個數

❻ 在數學中,有哪些符號代表數

1、∝讀作正比於,表示正比例。

比如a∝b讀作a正比於b,表示a與b成正比例。

2、∮讀音fai,表示曲線積分(閉合路徑)。

3、∫讀作:「sum」,是不定積分符缺凱號。就讀做對某某積分,就可以了如∫x dx 讀作對x積分。

4、∷equals, as (proportion)

數學專用術語。表示:等於,成比例。

5、⊙ 讀作圓

表示一個圓(◎、○)的圓心。

表示一個圓的方法是 ⊙加圓心的字母 如 ⊙O ⊙A

(6)什麼數學符號代表不清擴展閱讀:

數學符號的種類

1、數量符號

如:i, ,伏褲喚a,x,e,π。

2、運算符號

如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

3、關系符號

如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「純盯≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號。

「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b 表示「a能整除b」,而 ||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。

4、結合符號

如小括弧「()」,中括弧「[ ]」,大括弧「{ }」,橫線「—」。

閱讀全文

與什麼數學符號代表不清相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:698
乙酸乙酯化學式怎麼算 瀏覽:1367
沈陽初中的數學是什麼版本的 瀏覽:1312
華為手機家人共享如何查看地理位置 瀏覽:1006
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:843
數學c什麼意思是什麼意思是什麼 瀏覽:1364
中考初中地理如何補 瀏覽:1255
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:666
數學奧數卡怎麼辦 瀏覽:1344
如何回答地理是什麼 瀏覽:986
win7如何刪除電腦文件瀏覽歷史 瀏覽:1017
大學物理實驗干什麼用的到 瀏覽:1443
二年級上冊數學框框怎麼填 瀏覽:1655
西安瑞禧生物科技有限公司怎麼樣 瀏覽:810
武大的分析化學怎麼樣 瀏覽:1207
ige電化學發光偏高怎麼辦 瀏覽:1295
學而思初中英語和語文怎麼樣 瀏覽:1601
下列哪個水飛薊素化學結構 瀏覽:1382
化學理學哪些專業好 瀏覽:1447
數學中的棱的意思是什麼 瀏覽:1013