① 高中數學排列組合公式是什麼
高中排列組合公式是:C(n,m)=A(n,m)/m!=n!/m!(n-m)!與C(n,m)=C(n,n-m)。
例如C(4,2)=4!/(2!*2!)=4*3/(2*1)=6,C(5,2)=C(5,3)。
排列組合c計算方法:C是從幾個中選取出來,不排列,只組合。
C(n,m)=n*(n-1)*...*(n-m+1)/m!
例如c53=5*4*3÷(3*2*1)=10,再如C(4,2)=(4x3)/(2x1)=6。
兩個常用的排列基本計數原理及應用:
1、加法原理和分類計數法:
每一類中的每一種方法都可以獨立地完成此任務,兩類不同辦法中的具體方法,互不相同(即分類不重),完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
2、乘法原理和分步計數法:
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務,各步計數相互獨立。只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。
② 高中數學排列組合公式有哪些
高中數學排列組合公式如下:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)。
組合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!。
例如A(4,2)=4!/2!=4*3=12。
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。
加法原理與分布計數法:
1、加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法...在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+.. +m種不同方法。
2、第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2...第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合AUA2....UAn。
3、分類的要求:每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重) ;完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
③ 求助!高中數學,C23 (C右上角2右下角3)的解答過程(公式)
此為組合數,有對應的公式
④ 高中數學排列組合這種式子怎麼計算
C4,2就是4*3/2=6,
C3,1=3,
A2,2等於2,
如果是要做懲罰的話,把6×3×2就等於36