導航:首頁 > 數字科學 > 數學模型數學思想方法有哪些

數學模型數學思想方法有哪些

發布時間:2023-08-27 05:51:30

1. 數學四大思想八大方法是什麼

數學四大思想:數形結合思想,轉化思想,分類討論思想,整體思想。八大數學方法:配方法,因式分解法,待定系數法,換元法,構造法,等積法,反證法,判別式法。

以上是學習中常用的思想方法。這些都是學習數學的過程中,經常運用的。不同學習階段,數學思想方法的運用也不同,側重點各有差異。思想方法分類也不盡相同。

方法概述

函數的思想,就是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決的數學思想。

方程的思想,就是分析數學問題中變數間的等量關系,建立方程或方程組,或者構造方程,通過解方程或方程組,或者運用方程的性質去分析、轉化問題,使問題獲得解決的數學思想。

2. 數學四大思想八大方法是什麼

數學思想是指人們對數學理論和內容的本質的認識,數學方法是數學思想的具體化形式實際上兩者的本質是相同的,差別只是站在不同的角度看問題,通常混稱為數學思想方法。數學四大思想八大方法是代數思想、數形結合、轉化思想、對應思想方法、假設思想方法、比較思想方法、符號化思想方法、極限思想方法。

數學思想方法

數形結合是一個數學思想方法,包含以形助數和以數輔形兩個方面,其應用大致可以分為兩種情形,或者是藉助形的生動和直觀性來闡明數之間的聯系,即以形作為手段,數為目的,比如應用函數的圖像來直觀地說明函數的性質。

或者是藉助於數的精確性和規范嚴密性來闡明形的某些屬性,即以數作為手段,形作為目的,如應用曲線的方程來精確地闡明曲線的幾何性質。

數形結合的思想,其實質是將抽象的數學語言與直觀的圖像結合起來,關鍵是代數問題與圖形之間的相互轉化,它可以使代數問題幾何化,幾何問題代數化。

3. 數學四大思想八大方法是什麼

1、數學思想方法之分類討論

分類討論思想具有較高的邏輯性及很強的綜合性,縱觀近幾年的高考數學真題,不管是文科還是理科,同學們在解決最後的數學綜合問題時,基本上都需要分類討論。

本節課老師給同學們深度剖析了分類討論思想,並結合典型例題引導同學們樹立分類討論思想,教會同學們如何靈活運用分類討論思想解決數學問題。

2、數學思想方法之數形結合

數形結合思想是藉助於數學圖形解決數學問題,它可以使復雜的問題簡單化,抽象的問題直觀化,是解決綜合問題的得力助手。正是因為數形結合的這種優越性,它已經成為高考必考的數學思想方法。

3、數學思想方法之函數

函數與方程思想是非常重要的一種數學思想,高考中所佔比重較大,綜合知識多、題型多、應用技巧多。

4、數學思想方法之方程、轉化與化歸

轉化與化歸思想在高考中也佔有十分重要的地位,數學問題的解決,總離不開轉化與化歸.本節課老師給大家總結並分析了函數與方程思想以及轉化與化歸思想的常見題型,並重點講解了函數與方程、轉化與化歸在解題中的靈活運用。



常見的轉化方法:

直接轉化法:把原問題直接轉化為基本定理、基本公式或基本圖形問題。

換元法:運用「換元」把式子轉化為有理式或使整式降冪等,把較復雜的函數、方程、不等式問題轉化為易於解決的基本問題。

數形結合法:研究原問題中數量關系(解析式)與空間形式(圖形)關系,通過互相變換獲得轉化途徑。

等價轉化法:把原問題轉化為一個易於解決的等價命題,達到化歸的目的。

特殊化方法:把原問題的形式向特殊化形式轉化,並證明特殊化後的問題,使結論適合原問題。

構造法:「構造」一個合適的數學模型,把問題變為易於解決的問題。

坐標法:以坐標系為工具,用計算方法解決幾何問題也是轉化方法的一個重要途徑。

4. 一般的數學思想方法有哪些

1 函數思想

把某一數學問題用函數表示出來,並且利用函數探究這個問題的一般規律。

2 數形結合思想

把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答。

3 整體思想

整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。

4 轉化思想

在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。

5 類比思想

把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼推斷它們在其他方面也可能有相同或類似之處。

(4)數學模型數學思想方法有哪些擴展閱讀:

函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。

笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。

函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。

它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題,經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。

在解題中,善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系,構造出函數原型。另外,方程問題、不等式問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。

函數知識涉及的知識點多、面廣,在概念性、應用性、理解性都有一定的要求,所以是高考中考查的重點。

我們應用函數思想的幾種常見題型是:遇到變數,構造函數關系解題;有關的不等式、方程、最小值和最大值之類的問題,利用函數觀點加以分析;含有多個變數的數學問題中,選定合適的主變數,從而揭示其中的函數關系。

實際應用問題,翻譯成數學語言,建立數學模型和函數關系式,應用函數性質或不等式等知識解答;等差、等比數列中,通項公式、前n項和的公式,都可以看成n的函數,數列問題也可以用函數方法解決。

引起分類討論的原因主要是以下幾個方面:

① 問題所涉及到的數學概念是分類進行定義的。如|a|的定義分a>0、a=0、a<0三種情況。這種分類討論題型可以稱為概念型。

② 問題中涉及到的數學定理、公式和運算性質、法則有范圍或者條件限制,或者是分類給出的。如等比數列的前n項和的公式,分q=1和q≠1兩種情況。這種分類討論題型可以稱為性質型。

③ 解含有參數的題目時,必須根據參數的不同取值范圍進行討論。如解不等式ax>2時分a>0、a=0和a<0三種情況討論。這稱為含參型。

另外,某些不確定的數量、不確定的圖形的形狀或位置、不確定的結論等,都主要通過分類討論,保證其完整性,使之具有確定性。

進行分類討論時,我們要遵循的原則是:分類的對象是確定的,標準是統一的,不遺漏、不重復,科學地劃分,分清主次,不越級討論。其中最重要的一條是「不漏不重」。

解答分類討論問題時,我們的基本方法和步驟是:首先要確定討論對象以及所討論對象的全體的范圍;其次確定分類標准,正確進行合理分類,即標准統一、不漏不重、分類互斥(沒有重復);再對所分類逐步進行討論,分級進行,獲取階段性結果;最後進行歸納小結,綜合得出結論。

5. 數學四大思想八大方法是什麼

數學四大思想八大方法是數形結合思想,轉化思想,分類討論思想,整體思想。配方法,因式分解法,待定系數法,換元法,構造法,等積法,反證法,判別式法。以上是學習中常用的思想方法。這些都是學習數學的過程中,經常運用的。不同學習階段,數學思想方法的運用也不同,側重點各有差異,思想方法分類也不盡相同。

數學思想方法的含義

數學思想是對數學知識和方法本質的認識,是建立數學和用數學解決問題的指導思想,是解決數學問題的根本策略,它直接支配著數學的實踐活動。數學方法是解決問題的手段和工具,是解決數學問題時的程序、途徑,它是實施數學思想的技術手段。轉化思想,提高學生分析解決問題的能力。數形結合的思想方法,提高學生的數形轉化能力和遷移思維的能力。分類討論的思想方法,培養學生全面觀察事物、有條理的處理問題的能力。建模思想使學生更有思想,方法形成正確的數學態度。

6. 數學思維的一般方法有哪些

數學思想方法有:函數的思想、分類討論的思想、逆向思考的思想、數形結合思想、函數與方程、化歸與轉化、整體思想、轉化思想、隱含條件思想、極限思想。

3.逆向思考的思想

逆向思維,也稱求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式 ,敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。

4.數形結合思想

數與形是數學中的兩個最古老,也是最基本的研究對象,它們在一定條件下可以相互轉化。中學數學研究的對象可分為數和形兩大部分,數與形是有聯系的,這個聯系稱之為數形結合,或形數結合。

7. 數學思想方法有哪幾種

數學思想方法有8種,分別如下:

一、解答數學題的轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、更清晰。

二、逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式。敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。

三、邏輯思維,是人們在認識過程中藉助於概念、判斷、推理等思維形式對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。邏輯思維,在解決邏輯推理問題時使用廣泛。

四、創新思維是指以新穎獨創的方法解決問題的思維過程,通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法、視角去思考問題,提得出與眾不同的解決方案。可分為差異性、探索式、優化式及否定性四種。

五、類比思維是指根據事物之間某些相似性質,將陌生的、不熟悉的問題與熟悉問題或其他事物進行比較,發現知識的共性,找到其本質,從而解決問題的思維方法。

六、對應思維是在數量關系之間(包括量差、量倍、量率)建立一種直接聯系的思維方法。比較常見的是一般對應(如兩個量或多個量的和差倍之間的對應關系)和量率對應。

七、形象思維,主要是指人們在認識世界的過程中,對事物表象進行取捨時形成的,是指用直觀形象的表象,解決問題的思維方法。想像是形象思維的高級形式也是其一種基本方法。

八、系統思維也叫整體思維,系統思維法是指在解題時對具體題目所涉及到的知識點有一個系統的認識,即拿到題目先分析、判斷屬於什麼知識點,然後回憶這類問題分為哪幾種類型,以及對應的解決方法。

閱讀全文

與數學模型數學思想方法有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:721
乙酸乙酯化學式怎麼算 瀏覽:1387
沈陽初中的數學是什麼版本的 瀏覽:1332
華為手機家人共享如何查看地理位置 瀏覽:1025
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:865
數學c什麼意思是什麼意思是什麼 瀏覽:1387
中考初中地理如何補 瀏覽:1275
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:683
數學奧數卡怎麼辦 瀏覽:1365
如何回答地理是什麼 瀏覽:1003
win7如何刪除電腦文件瀏覽歷史 瀏覽:1035
大學物理實驗干什麼用的到 瀏覽:1464
二年級上冊數學框框怎麼填 瀏覽:1678
西安瑞禧生物科技有限公司怎麼樣 瀏覽:900
武大的分析化學怎麼樣 瀏覽:1229
ige電化學發光偏高怎麼辦 瀏覽:1318
學而思初中英語和語文怎麼樣 瀏覽:1625
下列哪個水飛薊素化學結構 瀏覽:1407
化學理學哪些專業好 瀏覽:1470
數學中的棱的意思是什麼 瀏覽:1035