① 做初二數學證明題有什麼技巧
1、綜合法(由因導果),從已知條件出發,通過有關定義、定理、公理的應用,逐步向前推進,直到問題解決。
2、分析法(執果索因),從命題的結論考慮,推敲使其成立需要具備的條件,然後再把所需的條件看成要證的結論繼續推敲,如此逐步往上逆求,直到已知事實為止。
3、分析綜合法:將分析與綜合法合並使用,比較起來,分析法利於思考,綜合法易於表達,因此,在實際思考問題時,可合並使用,靈活處理,以利於縮短題設與結論的距離,最後達到證明目的。
(1)數學求證題不會怎麼辦擴展閱讀:
幾何證明作為平面幾何中的一個重要問題,它有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常常可以相互轉化,如證明平行關系可轉化為證明角等或角互補的問題。
掌握構造基本圖形的方法:復雜的圖形都是由基本圖形組成的,因此要善於將復雜圖形分解成基本圖形。在更多時候需要構造基本圖形,在構造基本圖形時往往需要添加輔助線,以達到集中條件、轉化問題的目的。
② 孩子數學幾何證明題不會怎麼辦
數學不好的孩子,怎麼辦:
①首先培養孩子數學興趣,用孩子喜歡的方式切入,孩子只有對感興趣的東西才更認真;
②基礎知識牢牢掌握,扎實的基礎是最重要的;
③知識點整理,制定學習計劃;
④針對性訓練,及時復習,查漏補缺。
③ 數學證明題怎樣巧解
1)按照題意畫出圖形;
(2)分清命題的條件的結論,結合徒刑,在「已知」一項中寫出題設,在「求證」一項中寫出結論;
(3)在「證明」一項中,寫出全部推理過程。
1、綜合法:一般地,利用已知條件和某些數學定義、公理、定理等,經過一系列的推理論證,最後推導出所要證明的結論成立。
2、分析法:一般地,從要證明的結論出發,逐步尋求使它成立的充分條件,直至最後,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止。
3、反證法:一般地,假設原命題不成立,經過正確的推理,最後得出矛盾,因此說明假設錯誤,從而證明了原命題成立。
④ 初中數學的幾何證明題完全不懂摸不著門路,該如何解決這個問題
初中數學的幾何證明題,許多人會覺得自己沒有做題思路,不知道該怎麼入手,無法找到突破口。
⑤ 解數學證明題的技巧有哪些
做數學證明題技巧如下:x0dx0a(1)正向思維。對於一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。x0dx0a(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思弊族喚維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對於初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去„„這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。x0dx0a(3)正逆結合。租凱對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等穗並等。正逆結合,戰無不勝。x0dx0a(4)「讀」——讀題x0dx0a如何讀題?仁者見仁、智者見智,我們課題組結合我們的研究和本校學生的實際,將讀題分為三步:第一步,粗讀(類似語文閱讀的瀏覽)。快速地將題目從頭到尾瀏覽一遍,大致了解題目的意思和要求;第二步,細讀。在大致了解題目的意思和要求的情況下,再認真地有針對性地讀題,弄清題目的題設和結論,搞清已知是什麼、需要證明的是什麼?並盡可能地將已知條件在圖形中用符號簡明扼要地表示出來(如哪兩個角相等,哪兩條線段相等,垂直關系,等等),若題中給出的條件不明顯的(即有隱含條件的),還要指導學生如何去挖掘它們、發現它們;第三步,記憶復述。在前面粗讀和細讀的基礎上,先將已知條件和要證明的結論在心裡默記一遍,再結合圖形中自己所標的符號將原題的意思復述出來。到此讀題這一環節,才算完成。x0dx0a對於讀題這一環節,我們之所以要求這么復雜,是因為在實際證題的過程中,學生找不到證明的思路或方法,很多時候就是由於漏掉了題中某些已知條件或將題中某些已知條件記錯或想當然地添上一些已知條件,而將已知記在心裡並能復述出來就可以很好地避免這些情況的發生。x0dx0a(5)「析」——分析x0dx0a用數學方法中的「分析法」,執果索因,一步一步探究證明的思路和方法。教師用啟發性的語言或提問指導學生,學生在教師的指導下經過一系列的質疑、判斷、比較、選擇,以及相應的分析、綜合、概括等認識活動,思考、探究,小組內討論、交流、發現解決問題的思路和方法。x0dx0a(6)「擇」——選擇最簡易的方法x0dx0a選擇最簡單的一種證題方法,這樣做,不僅能進一步理清證明思路、記憶相關的幾何定理、性質,而且還增加了學習的興趣和好奇心,從而激發學習的積極性和主動性。x0dx0a(7)「練」——變式練習x0dx0a變式,既是一種重要的思想方法,又是一種行之有效的方法。通過變式訓練,展現知識發生、發展、形成的完整認知過程。變式教學符合學生是認知規律,能有層次地推進,為學生提供一個求異、思變的空間,讓學生把學到的概念、公式、定理、法則靈活應用道各種情景中去,培養學生靈活多變的思維品質,提高學生研究、探索問題的能力,提高數學素養,從而有效地提高數學教學效果。
⑥ 數學證明題不會怎麼辦 有哪些技巧
對於很多學生來說,證明題是很難的部分,我整理了一些做證明題的方法。
解決證明題時,選擇向量或者輔助線的方式是一個不錯的選擇,防止使用普通解題方法導致解題過程繁雜,進而出現錯誤。加強證明題的靈活性,重點關注題目的變形以及與其他題型的綜合,研究典型的證明題題型,多思考。
俗話說:「興趣是最好的老師.」因此,提高高中生對數學的學習興趣可以說是提高數學證明題解題能力的重要方法。因此,在高中數學學習的過程中應該找到學習數學的樂趣,並且充分調動解證明題積極性,並培養獨立思考的能力,進而培養其解決數學證明題的能力。
顧名思義,就是從相反的方向思考問題。運用逆向思維解題,從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。
這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對於初中幾何證明題,最好用的方法就是用逆向思維法。
如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。
例如:可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去。
以上是我整理的做證明題的方法,希望能幫到你。
⑦ 數學的證明提不會做怎麼辦
多看書本中的定理、基本概念,有時候是通過定義來證明的,舉一反三,把定義理解透徹。學會一步步分解,挖出隱含條件,拆開去理解問題。對於不理解的知識點可以去問老師或同學,不要放那裡自己去鑽牛角尖。