導航:首頁 > 數字科學 > 數學如何積分

數學如何積分

發布時間:2022-03-31 15:20:57

㈠ 怎樣記住數學積分公式呢

要學會轉化,在數學中大多數公式都是轉化而來的,比如說平面圖形、立體圖形等等,其實都很好背,要學會聯想,背這個時聯想到另一個

㈡ 數學積分怎麼算

(1)
∫(0->+∞) xe^[-(x+y)] dy
=xe^(-x) . ∫(0->+∞) e^(-y) dy
=-xe^(-x) . [ e^(-y) ]|(0->+∞)
=xe^(-x)
(2)
∫(0->+∞) xe^[-(x+y)] dx
=e^(-y). ∫(0->+∞) xe^(-x) dx
=-e^(-y). ∫(0->+∞) x de^(-x)
=-e^(-y). [ xe^(-x)]|(0->+∞) + e^(-y). ∫(0->+∞) e^(-x) dx
=0 -e^(-y). [ e^(-x)]|(0->+∞)
=e^(-y)

㈢ 數學的"積分"有什麼作用,是什麼

積分的用處很多比如常常用來求面積...

比如圓的面積推導公式 就是先把圓分成無數個小塊

積分是微分的逆運算...

微積分(Calculus)是研究函數的微分、積分以及有關概念和應用的數學分支。微積分是建立在實數、函數和極限的基礎上的。微積分最重要的思想就是用"微元"與"無限逼近",好像一個事物始終在變化你不好研究,但通過微元分割成一小塊一小塊,那就可以認為是常量處理,最終加起來就行。

微積分學是微分學和積分學的總稱。 它是一種數學思想,『無限細分』就是微分,『無限求和』就是積分。無限就是極限,極限的思想是微積分的基礎,它是用一種運動的思想看待問題。比如,子彈飛出槍膛的瞬間速度就是微分的概念,子彈每個瞬間所飛行的路程之和就是積分的概念。如果將整個數學比作一棵大樹,那麼初等數學是樹的根,名目繁多的數學分支是樹枝,而樹乾的主要部分就是微積分。微積分堪稱是人類智慧最偉大的成就之一。

極限和微積分的概念可以追溯到古代。到了十七世紀後半葉,牛頓和萊布尼茨完成了許多數學家都參加過准備的工作,分別獨立地建立了微積分學。他們建立微積分的出發點是直觀的無窮小量,理論基礎是不牢固的。直到十九世紀,柯西和維爾斯特拉斯建立了極限理論,康托爾等建立了嚴格的實數理論,這門學科才得以嚴密化。

微積分學的建立

從微積分成為一門學科來說,是在十七世紀,但是,微分和積分的思想在古代就已經產生了。

公元前三世紀,古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉雙曲體的體積的問題中,就隱含著近代積分學的思想。作為微分學基礎的極限理論來說,早在古代以有比較清楚的論述。比如我國的莊周所著的《莊子》一書的「天下篇」中,記有「一尺之棰,日取其半,萬世不竭」。三國時期的劉徽在他的割圓術中提到「割之彌細,所失彌小,割之又割,以至於不可割,則與圓周和體而無所失矣。」這些都是樸素的、也是很典型的極限概念。

到了十七世紀,有許多科學問題需要解決,這些問題也就成了促使微積分產生的因素。歸結起來,大約有四種主要類型的問題:第一類是研究運動的時候直接出現的,也就是求即時速度的問題。第二類問題是求曲線的切線的問題。第三類問題是求函數的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用於另一物體上的引力。

十七世紀下半葉,在前人工作的基礎上,英國大科學家ㄈ牛頓和德國數學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創立工作,雖然這只是十分初步的工作。他們的最大功績是把兩個貌似毫不相關的問題聯系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。

牛頓和萊布尼茨建立微積分的出發點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現在數學中分析學這一大分支名稱的來源。牛頓研究微積分著重於從運動學來考慮,萊布尼茨卻是側重於幾何學來考慮的。

牛頓在1671年寫了《流數法和無窮級數》,這本書直到1736年才出版,它在這本書里指出,變數是由點、線、面的連續運動產生的,否定了以前自己認為的變數是無窮小元素的靜止集合。他把連續變數叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。

德國的萊布尼茨是一個博才多學的學者,1684年,他發表了現在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用於分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一片說理也頗含糊的文章,卻有劃時代的意義。他以含有現代的微分符號和基本微分法則。1686年,萊布尼茨發表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創設的微積分符號,遠遠優於牛頓的符號,這對微積分的發展有極大的影響。現在我們使用的微積分通用符號就是當時萊布尼茨精心選用的。

直到19世紀初,法國科學學院的科學家以柯西為首,對微積分的理論進行了認真研究,建立了極限理論,後來又經過德國數學家維爾斯特拉斯進一步的嚴格化,使極限理論成為了微積分的堅定基礎。才使微積分進一步的發展開來。

微積分的基本內容

研究函數,從量的方面研究事物運動變化是微積分的基本方法。這種方法叫做數學分析。

本來從廣義上說,數學分析包括微積分、函數論等許多分支學科,但是現在一般已習慣於把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分。微積分的基本概念和內容包括微分學和積分學。

微分學的主要內容包括:極限理論、導數、微分等。

積分學的主要內容包括:定積分、不定積分等。

微積分是與應用聯系著發展起來的,最初牛頓應用微積分學及微分方程為了從萬有引力定律導出了開普勒行星運動三定律。此後,微積分學極大的推動了數學的發展,同時也極大的推動了天文學、力學、物理學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學各個分支中的發展。並在這些學科中有越來越廣泛的應用,特別是計算機的出現更有助於這些應用的不斷發展。

㈣ 高等數學 如何積分

㈤ 高等數學,積分

積分一般分為不定積分、定積分和微積分三種 1.0不定積分 設F(x)是函數f(x)的一個原函數,我們把函數f(x)的所有原函數F(x)+C(C為任意常數)叫做函數f(x)的不定積分. 記作∫f(x)dx. 其中∫叫做積分號,f(x)叫做被積函數,x叫做積分變數,f(x)dx叫做被積

㈥ 大學的數學積分該怎樣運用

積分學的基本概念是一元函數的不定積分和定積分。主要內容包括積分的性質、計算,以及在理論和實際中的應用。不定積分概念是為解決求導和微分的逆運算而提出來的。如果對每一x∈I ,有f(x)=F′(x),則稱F(x)為f(x)的一個原函數,f(x)的全體原函數叫做不定積分,記為,因此,如果F(x)是 f(x)的一個原函數,則=F(x)+C,其中C為任意常數。定積分概念的產生來源於計算平面上曲邊形的面積和物理學中諸如求變力所作的功等物理量的問題。解決這些問題的基本思想是用有限代替無限;基本方法是在對定義域[a,b]進行劃分後,構造一個特殊形式的和式,它的極限就是所要求的量。具體地說,設f(x)為定義在[a,b]上的函數,任意分劃區間[a,b]:a=x0<x1<…<xn=b,記,||Δ||= ,任取 xi ∈Δxi,如果有一實數I,有下式成立 : ,則稱I為f(x)在[a,b]上的定積分,記為I=f(x)dx。當f(x)≥0時,定積分的幾何意義是表示由x=a,x=b,y=0和y=f(x)所圍曲邊形的面積。定積分除了可求平面圖形的面積外,在物理方面的應用主要有解微分方程的初值問題和「微元求和」。 聯系微分學和積分學的基本公式是:若f(x)在[a,b]上連續,F(x)是f(x)的原函數,則f(x)dx=F(b)-F(a)。通常稱之為牛頓-萊布尼茲公式。因此,計算定積分實際上就是求原函數,也即求不定積分。但即使f(x)為初等函數,計算不定積分的問題也不能完全得到解決,所以要考慮定積分的近似計算,常用的方法有梯形法和拋物線法。

㈦ 關於數學積分

如圖所示,僅供參考

㈧ 數學積分這個怎麼算

反導回去,對導數的公式熟練掌握以及應用,或者直接從幾何意義出發看題

㈨ 數學積分怎麼計算

數學積分的話,有不定積分和定積分,那麼做積分的時候,可以嘗試使用一些公式進行輔助計算,會比較簡便。

閱讀全文

與數學如何積分相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:748
乙酸乙酯化學式怎麼算 瀏覽:1413
沈陽初中的數學是什麼版本的 瀏覽:1367
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:896
數學c什麼意思是什麼意思是什麼 瀏覽:1424
中考初中地理如何補 瀏覽:1314
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1405
如何回答地理是什麼 瀏覽:1038
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1495
二年級上冊數學框框怎麼填 瀏覽:1715
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1014
武大的分析化學怎麼樣 瀏覽:1257
ige電化學發光偏高怎麼辦 瀏覽:1346
學而思初中英語和語文怎麼樣 瀏覽:1671
下列哪個水飛薊素化學結構 瀏覽:1433
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1073