Ⅰ 如何做數學的圖形證明題
首先應該每讀一句就在圖形上標出已知條件,
然後根據定義,作出輔助線,一步一步的往條
件上證明,最後便可以證出.
做證明問題應多找典型題,多做就可以!
Ⅱ 數學證明題怎麼做 初中
方法一般有兩種,一:正推法,從已知入手。二:逆推法,從結論出發看要證明結論需要證明什麼。簡單的題能較快地找到思路我認為用正推法好些,復雜的題較難我比較喜歡用逆推法。在做題的同時還要注意格式、保證得出的結論有理有據。
但要學好更重要的還是上課認真聽講。
希望對你有些幫助
Ⅲ 怎樣才能做好數學的證明題有什麼方法
如果平面幾何的證明題已經過關,則其它的證明題都應該可以學好的,只要熟練掌握相關部分的基本概念、基本定理和性質,無論是三角函數、解析幾何還是微積分、線性代數方面的證明題都是容易學會的。
但是其它數學部分的基本概念、基本定理和性質的掌握,可能比平面幾何里的概念、定理、性質難掌握一些,因為它們不象平面幾何里有直觀的幾何形象,一般地說,層次越高的數學分支越抽象,學會證明題的關鍵是把它們弄得象對平面幾何里的定理一樣熟悉。
所謂平面幾何的證明題已經過關,是指會做的證明題能夠把證明嚴密地寫出來;不會做的題目會寫不出證明——如果不會做的題目也能夠把證明寫出來,就不能認為平面幾何已經過關。我不是講笑話,這里也常常看到一些人「因為、所以」寫了一大篇,實際上徹頭徹尾是錯的,這樣的人恐怕很難學好證明題的,因為他們的邏輯思維很混亂。
Ⅳ 如何培養做數學證明題的思路
數學證明題技巧如下:
(1)正向思維。對於一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對於初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去„„這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
(4)「讀」——讀題
如何讀題?仁者見仁、智者見智,我們課題組結合我們的研究和本校學生的實際,將讀題分為三步:第一步,粗讀(類似語文閱讀的瀏覽)。快速地將題目從頭到尾瀏覽一遍,大致了解題目的意思和要求;第二步,細讀。在大致了解題目的意思和要求的情況下,再認真地有針對性地讀題,弄清題目的題設和結論,搞清已知是什麼、需要證明的是什麼?並盡可能地將已知條件在圖形中用符號簡明扼要地表示出來(如哪兩個角相等,哪兩條線段相等,垂直關系,等等),若題中給出的條件不明顯的(即有隱含條件的),還要指導學生如何去挖掘它們、發現它們;第三步,記憶復述。在前面粗讀和細讀的基礎上,先將已知條件和要證明的結論在心裡默記一遍,再結合圖形中自己所標的符號將原題的意思復述出來。到此讀題這一環節,才算完成。
對於讀題這一環節,我們之所以要求這么復雜,是因為在實際證題的過程中,學生找不到證明的思路或方法,很多時候就是由於漏掉了題中某些已知條件或將題中某些已知條件記錯或想當然地添上一些已知條件,而將已知記在心裡並能復述出來就可以很好地避免這些情況的發生。
(5)「析」——分析
用數學方法中的「分析法」,執果索因,一步一步探究證明的思路和方法。教師用啟發性的語言或提問指導學生,學生在教師的指導下經過一系列的質疑、判斷、比較、選擇,以及相應的分析、綜合、概括等認識活動,思考、探究,小組內討論、交流、發現解決問題的思路和方法。
(6)「擇」——選擇最簡易的方法
選擇最簡單的一種證題方法,這樣做,不僅能進一步理清證明思路、記憶相關的幾何定理、性質,而且還增加了學習的興趣和好奇心,從而激發學習的積極性和主動性。
(7)「練」——變式練習
變式,既是一種重要的思想方法,又是一種行之有效的方法。通過變式訓練,展現知識發生、發展、形成的完整認知過程。變式教學符合學生是認知規律,能有層次地推進,為學生提供一個求異、思變的空間,讓學生把學到的概念、公式、定理、法則靈活應用道各種情景中去,培養學生靈活多變的思維品質,提高學生研究、探索問題的能力,提高數學素養,從而有效地提高數學教學效果。
Ⅳ 數學證明題怎麼做
以下採用代數法來解答這個問題。
為了計算方便,不妨設BD=2,CD=4,BC=2a, AB=b,
【1】先算出a與b的關系式
根據等腰三角形性質,cosB=a/b
又,在ΔDBC中,利用餘弦定理得,cosB=(BD²+BC²-CD²)/2BD*BC=(a²-3)/2a
則,a/b=(a²-3)/2a,即:
b=2a²/(a²-3)
b-2=6/(a²-3)
【2】用a、b表達出cos∠ADE
在ΔDBC中,利用餘弦定理得,cos∠ADE=-(BD²+CD²-BC²)/2BD*CD=(a²-5)/4
【3】轉化命題,並進行證明
延長ED至F,使得DF=DA,連接AF
則∠ADE=2∠F,如果能證明∠F=∠AED,則命題得證
也就是要證明AF=AE
令∠ADE=γ
在ΔADF中,利用餘弦定理得,
AF²=2AD²-2AD²cos∠ADF=2AD²+2AD²cos∠ADE
=2(b-2)²(1+cosγ)=2*36/(a²-3)² *(1+(a²-5)/4)
=18(a²-1)/(a²-3)²
在ΔADE中,利用餘弦定理得,
AE²=AD²+DE²-2AD*DE*cos∠ADE
=(b-2)²+9-6(b-2)cosγ=(b-2)(b-2-6cosγ)+9
=6/(a²-3)[6/(a²-3)-3(a²-5)/2]+9
=18[2-(a²-3)(a²-5)/2]/(a²-3)²+9
=9[4-(a²-3)(a²-5)]/(a²-3)²+9
=9(4-a^4+8a²-15)/(a²-3)²+9
=9[(-a^4+8a²-11)/(a²-3)²+1]
=9[(a²-3)²-a^4+8a²-11]/(a²-3)²
=9[a^4-6a²+9-a^4+8a²-11]/(a²-3)²
=9(2a²-2)/(a²-3)²
=18(a²-1)/(a²-3)²
顯然,AF=AE
故,命題得證
Ⅵ 如何做數學證明題
主要要把公理、定理背熟。注意有些題目中隱含的條件通常是解題的關鍵,有時一道題能否解答出來或者解題時間都很大程度上依賴於輔助線的做法
Ⅶ 做數學證明題的思路是什麼,過程怎麼寫
1. 弄清題意
如何弄清題意呢?根據命題的定義可知,命題由條件與結論兩部分組成,因此區分命題的條件與結論至關重要,是解題成敗的關鍵。命題可以改寫成「如果………..,那麼……….」的形式,其中「如果………..」就是命題的條件,「那麼…….」就是命題的結論
2、根據題意,畫出圖形。
圖形對解決證明題,能起到直觀形象的提示,所以畫圖因盡量與題意相符合。並且把題中已知的條件,能標在圖形上的盡量標在圖形上。
3. 根據題意與圖形,用數學的語言與符號寫出已知和求證。
眾所周知,命題的條件---已知,命題的結論---求證,但要特別注意的是,已知、求證必須用數學的語言和符號來表示。
4. 分析已知、求證與圖形,探索證明的思路。
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考。
(2)逆向思維。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路。
5. 根據證明的思路,用數學的語言與符號寫出證明的過程
證明過程的書寫,其實就是把證明的思路從腦袋中搬到紙張上。這個過程,對數學符號與數學語言的應用要求較高,在講解時,要提醒學生任何的「因為、所以」,在書寫是都要符合公理、定理、推論或以已知條件相吻合,不能無中生有、胡說八道,要有根有據!
6. 檢查證明的過程,看看是否合理、正確
任何正確的步驟,都有相應的合理性和與之相應證的公理、定理、推論,證明過程書寫完畢後,對證明過程的每一步進行檢查,是非常重要的,是防止證明過程出現遺漏的關鍵。最後,同學們在平時練習中要敢於嘗試,多分析,多總結。才能做到熟能生巧!
Ⅷ 如何做數學證明題方法
矇混過關,把題目已知條件寫一下,中間隨便寫幾部,再把結果抄一下,說不定能得幾分
做證明題要練就一定的步驟和思路.首先認真讀題,題干中的每個重要條件都要讀得很懂.做輔助線也很關鍵,有時一道題能否解答出來或者解題時間都很大程度上依賴於輔助線的做法.基礎理論知識也需夯實.另外需要特別注意要求證的結論.從結論出發,結合已掌握的理論知識,去尋找方法.解題步驟往往和思維路徑是相反的.不要為了做題而做題,一定要善於總結方法和題型.
很高興為你解答有用請採納
Ⅸ 做數學證明題有什麼好方法嗎
我個人數學算是比較好的。淺談一下,數學證明題在考試中是最最最容易拿分的題目。很多人覺得不好做或者沒有好的方法去解答,是因為有這么一個誤區在裡面。
證明題切記一句話,很重要,不能用未知證已知。乍看下像是一句廢話,但實際很實用。一個證明題目中,可以分成兩部分,已知條件(這點就要自己細心分析了,包括基礎知識的變形啊、基本功啊、數學模型建模啊等)和求證結論。思路上可以倒著來推到結論,但證明過程一定要正著寫,就是用已知的真理、已知結論來推導出來,不管是不是廢話,是不是眾所周知的公理,只要不是題目給出的條件,就必須寫出來推導過程,這是拿分要點。
其次說一說思路怎麼來。一般要證明的東東比較不容易看出來,這個時候要到倒著來推導,先用題目給出的結論去推導題目的條件,切記,這個是思路!!比較容易得到中間它需要考察到你的關鍵知識點,一些定理變形雲雲。。如果是幾何題目就更容易找到思路,基本就是默認求證是正確的,然後需要一條或幾條關鍵的輔助線,這個就需要積累了,都是有規律的。 總之,思路要逆向來推導,先假設求證正確,反向推到已給條件,畫出輔助線,求出輔助定理。。證明過程一定要用題目給出的條件一步步來正明。
Ⅹ 求助:大家是怎麼做數學證明題的
中值定理的證明是有思路的看看燈哥第三章的證明吧蠻經典的,幾乎能橫掃考場