㈠ 怎麼把數學學到最好
學習數學不僅要有強烈的學習願望和學習熱情,而且還要有科學的學習方法,才可能把數學學好。從分析數學學習活動可知,學習方法既受課堂教學的制約,又具有自身的一些特點。所以,我們一方面提出與課堂教學相配合的學習方法,另一方面又根據數學學習的自身特點,概括出一些特殊的學習方法。 一 預習、聽課、復習、作業的方法 與數學課堂教學相適應的學習方法,就是預習、聽課、復習、作業的方法等的基本方法。 1、預習的方法 預習是上課前對即將要上的數學內容進行閱讀,了解其梗概,做到心中有數,以便於掌握聽課的主動權。預習是獨立學習的嘗試,對學習內容是否正確理解,能否把握其重點、關鍵,洞察到隱含的思想方法等,都能及時在聽課中得到檢驗、加強或矯正,有利於提高學習能力和養成自學的習慣,所以它是數學學習中的重要一環。 數學具有很強的邏輯性和連貫性,新知識往往是建立在舊知識的基礎上。因此,預習時就要找出學習新知識所需的知識,並進行回憶或重新溫習,一旦發現舊知識掌握得不好,甚至不理解時,就要及時採取措施補上,克服因沒有掌握好或遺忘帶來的學習障礙,為順利學習新內容創造條件。 預習的方法,除了回憶或溫習學習新內容所需的舊知識(或預備知識)外,還應該了解基本內容,也就是知道要講些什麼,要解決什麼問題,採取什麼方法,重點關鍵在哪裡,等等。預習時,一般採用邊閱讀、邊思考、邊書寫的方式,把內容的要點、層次、聯系劃出來或打上記號,寫下自己的看法或弄不懂的地方與問題,最後確定聽課時要解決的主要問題或打算,以提高聽課的效率。在時間的安排上,預習一般放在復習和作業之後進行,即做完功課後,把下次課要學的內容看一遍,其要求則根據當時具體情況靈活掌握。如果時間允許,可以多思考一些問題,鑽研得深入一些,甚至可做做練習題或習題;時間不允許,可以少一些問題,留給聽課去解決的問題就多一些,不必強求一律。 2、聽課的方法 聽課是學習數學的主要形式。在教師的指導、啟發、幫助下學習,就可以少走彎路,減少困難,能在較短的時間內獲得大量系統的數學知識,否則事倍功半,難以提高效率。所以聽課是學好數學的關鍵。 聽課的方法,除在預習中明確任務,做到有針對性地解決符合自己的問題外,還要集中注意力,把自己思維活動緊緊跟上教師的講課,開動腦筋,思考教師怎樣提出問題,分析問題,解決問題,特別要從中學習數學思維的方法,如觀察、比較、分析、綜合、歸納、演繹、一般化、特殊化等,就是如何運用公式、定理,了解其中隱含著的思想方法。 聽課時,一方面理解教師講的內容,思考或回答教師提出的問題,另一方面還要獨立思考,鑒別哪些知識已經聽懂,哪些還有疑問或有新的問題,並勇於提出自己的看法。如果課內一時不可能解決,就應把疑問或問題記下,留待自己去解決或請教老師,並繼續專心聽老師講課,切勿因一處沒有聽懂,思維就停留在這里,而影響後面的聽課。一般,聽課時要把老師講課的要點、補充的內容與方法記下,以備復習之用。 3、復習的方法 復習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精煉概括、牢固掌握的目的。復習應與聽課緊密銜接、邊閱讀教材邊回憶聽課內容或查看課堂筆記,及時解決存在的知識缺陷與疑問。對學習的內容務求弄懂,切實理解掌握。如果有的問題經過較長時間的思索,還得不到解決,則可與同學商討或請老師解決。 復習還要在理解教材的基礎上,溝通知識間的內在聯系,找出其重點、關鍵,然後提煉概括,組成一個知識系統,從而形成或發展擴大數學認知結構。 復習是對知識進行深化、精煉和概括的過程,它需要通過手和腦積極主動地開展活動才能達到,因此,在這個過程中,提供了發展和提高能力的極好機會。數學的復習,不能僅停留在把已學的知識溫習記憶一遍的要求上,而要去努力思考新知識是怎樣產生的,是如何展開或得到證明的,其實質是什麼,怎樣應用它等。 4、作業的方法 數學學習往往是通過做作業,以達到對知識的鞏固、加深理解和學會運用,從而形成技能技巧,以及發展智力與數學能力。由於作業是在復習的基礎上獨立完成的,能檢查出對所學數學知識的掌握程度,能考查出能力的水平,所以它對於發現存在的問題,困難,或做錯的題目較多時,往往標志著知識的理解與掌握上存在缺陷或問題,應引起警覺,需及早查明原因,予以解決。 通常,數學作業表現為解題,解題要運用所學的知識和方法。因此,在做作業前需要先復習,在基本理解與掌握所學教材的基礎上進行,否則事倍功半,花費了時間,得不到應有的效果。 解題,要按一定的程序、步驟進行。首先,要弄清題意,認真讀題,仔細理解題意。如哪些是已知的數據、條件,哪些是未知數、結論,題中涉及到哪些運算,它們相互之間是怎樣聯系著的,能否用圖表示出來,等等,要詳加推敲,徹底弄清。 其次,在弄清題意的基礎上,探索解題的途徑,找出已知與未知,條件與結論之間的聯系。回憶與之有關的知識方法,學過的例題、解過的題目等,並從形式到內容,從已知數、條件到未知數、結論,考慮能否利用它們的結果或方法,可否引進適當輔助元素後加以利用是否能找出與該題有關的一個特殊問題或一個類似問題,考察解決它們對當前問題有什麼啟發;能否把分開,一部分一部分加以考察或變更,再重新組合,以達到所求結果,等等。這就是說,在探索解題過程中,需要運用聯想、比較、引入輔助元素、類比、特殊化、一般化、分析、綜合等一系列方法,並從解題中學會這一系列探索的方法。 第三,根據探索得到的解題方案,按照所要求的書寫格式和規范,把解的過程敘述出來,並力求簡單、明白、完整。最後還要對解題進行回顧,檢查解答是否正確無誤,每步推理或運算是否立論有據,答案是否說盡無遺;思考一下解題方法可否改進或有否新的解法,該題結果能否推廣(事實上中學課本中不少題目是可以推廣的)等,並小結一下解題的經驗,進而發展與完善解題的思想方法,總結出帶有規律性的東西來。 二「由薄到厚」和「由厚到薄」的學習方法 「由薄到厚」和「由厚到薄」是數學家華羅庚多次提到的治學方法,他認為學習要經過「由薄到厚」和「由厚到薄」的過程。「由薄到厚」是理解和弄懂所學的數學知識,知其然並知其所以然。學習不僅要理解和記住概念、定理、公式、法則等,而且還要想一想它們是如何得來的,與前面的知識是怎樣聯系著的,表達中省略了什麼,關鍵在哪裡,對知識是否有新的認識,有否想到其他的解法等等。這樣細加分析、考慮後,就會對內容增添某些註解,補充一些的解法或產生新的認識等,出現了「書越讀越厚」。 但是學習不能到此止步,還需要把學過內容貫串起來,加以融會貫通,提煉出它的精神實質,抓住重點、線索和基本思想方法,組織整理成精煉的內容,這就是一個「由厚到薄」的過程。在這過程中,不是量的減少,而是質的提高,所以具有更重要的作用。通常在總結一章、幾章或一本書的內容時,就要有這種要求,運用這種方法。這時由於知識出現高度概括,就更能促進知識的遷移,也更有利於進一步學習。 「由薄到厚」和「由厚到薄」是一個螺旋上升的過程,它具有不同的層次和要求,學習中需要經過從低到高多次的運用,才能收到應有的效果。這一學習方法體現著「分析」與「綜合」、「發散」與「收斂」的辯證統一,就是說數學學習需要這兩者統一起來。 三 接受學習與發現學習相結合的方法 數學學習應是有意義接受學習和有意義發現學,如何使兩者互相配合、有機結合,充分 發揮各自和綜合的效力這是學習方法的一個重要方面。 接受學習,不論是聽系統的講授,還是以定論的形式給出的教材,都不涉及任何的獨立發現。但在學習過程中,學生處於積極、主動的狀態,並非只是單純的接受,他們總不斷地向自己提出問題,如定理是如何發現或產生的,證明的思路是怎樣想出來的,中間要攻破哪幾個關鍵的地方。許多數學家都十分強調「應該不只脹到書面上,而且還要看到書背後的東西。」在進行接受學習時,還要增添某些發現學習的萬分,從中學習創造、發明的思想和方法,而不僅僅停留在知識的接受上。 發現學習,是依靠自己對所提供的材料或問題的觀察、比較、分析、綜合等,獨立地了現的解決某問題,從而獲得新知識。在解決問題時,要真正理解問題中所涉及的要領、原理、公式、定理和法則,懂得每步操作的意義,以及提出假設、檢驗假設的目的等。解決問題,總需要聯想以往學習過和知識與方法,一時回憶不起來的,還要重新復習,以求進一步理解的應用。有是遇到困難問題,甚至還在查看參考書或請教老師者能解決。可見,這期間也穿插著接受學習。 數學學習既需要接受學習,以便在短時間內獲得大量前人積累起來的寶貴知識財富,也需要發現學習,以利於思維、培養創造能力。因此,學習要根據自身的年齡、學習能力特點和教學內容的要求,使兩者緊密結合起來。
採納哦
㈡ 數學如何學會總結
目前學校的教學方法,最主要的就是教會學生「總結」。而總結的核心,就是「分類」。目前的這種以分類為核心的總結方法,由於過於僵化,所以,隨著分類不斷細化,思維就必然越來越僵化。
比如某個學生本來又會做三角函數的題目,也會做一元二次方程的題目,也會用一元二次方程的方法解決很多三角函數的題目,而且做題速度很快。但老師教會他「總結」後,他把三角函數的題目分成好幾類,每一類又分成了好幾類,等等不斷的細分下去。
然後,在分類過程中,進行說明,比如這類題目應該用一元二次方程,另外一類題目不該用一元二次方程,等等。經過這么細致的分類之後,他確實有能會做了一些新的類型的題目,但原來的快速解題能力明顯的下降了。而且,以前做題的那種輕松、流暢的感覺,徹底消失了。
那麼,如何解決「分類」與「靈活」的矛盾呢?
其實方法很簡單,就是在「分類」的過程中,你的進一步的「分類」,不要受其他人的已有的分類的限制,也不要被自己的分類所限制,也不要被自己的總結的各種方法所限制。你可以橫向分類、豎向分類、正向分類、反向分類,分類之後再分類,不同的分類之間進行分類,等等。
對於數學,還有一些方法:你總結出很多解題技巧之後,進行分類。例如你總結出某種解題技巧可解決哪些題型,而哪些題型可以變化成另外的題型,等等。總結這些東西到一定程度之後,你就嘗試著「自己出題」,在自己出題的過程中,針對某一個題型,找「一題多解」類參考書,尤其是一種題型有幾十種以上解題技巧的,專門找超出你分類范圍之外的,這樣,你的大腦和筆記本中的「解題技巧體系」就得到進一步擴充了。
從「原理」的角度,「分類」是「思維支腳」的形成和細化的一個重要方法這個過程中,你的大腦中的「思維海」被強行「犁」出了很多「思維縫隙」,這些「思維縫隙」有可能把原有的「思維鉤子」給弄斷掉了。所以,你需要重塑或者新建一些「思維鉤子」(把斷掉的「思維鉤子」再連接起來,那是不可能的,「思維鉤子」可不是現實生活中的繩子)。
㈢ 高中數學怎麼能夠學得融匯貫通
切,大青,信樓上那個總結神馬的還不如做題呢==這…可以問問老成啊
㈣ 高中數學數列類型問題如何融會貫通。
其實數列題的題型很有限。
基礎的分等差和等比。 選擇題裡面只會給出足夠的條件 利用公式就可以算未知某一項
還有求前n項和的。根據不同的形式 有裂項相消,錯位相減 等幾種方法。
還有證明不等式的,也基本上是化簡求和比大小。或者取極值,比較靈活。
等差數列
等差公式:an=a1+(n-1)d
等差求和:Sn=n (a1+an)/2
=na1+n(n-1)d/2
⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
⑶若{ a }、{ b }為等差數列,則{ a ±b }與{ka +b}(k、b為非零常數)也是等差數列.
⑷對任何m、n ,在等差數列{ a }中有:a = a + (n-m)d,特別地,當m = 1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l + k + p + … = m + n + r + … (兩邊的自然數個數相等),那麼當{a }為等差數列時,有:a + a + a + … = a + a + a + … .
⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd( k為取出項數之差).
⑺如果{ a }是等差數列,公差為d,那麼,a ,a ,…,a 、a 也是等差數列,其公差為-d;在等差數列{ a }中,a -a = a -a = md .(其中m、k、 )
⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.
⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.
⑽設a ,a ,a 為等差數列中的三項,且a 與a ,a 與a 的項距差之比 = ( ≠-1),則a = .
等差數列前n項和公式S 的基本性質
⑴數列{ a }為等差數列的充要條件是:數列{ a }的前n項和S 可以寫成S = an + bn的形式(其中a、b為常數).
⑵在等差數列{ a }中,當項數為2n (n N )時,S -S = nd, = ;當項數為(2n-1) (n )時,S -S = a , = .
⑶若數列{ a }為等差數列,則S ,S -S ,S -S ,…仍然成等差數列,公差為 .
⑷若兩個等差數列{ a }、{ b }的前n項和分別是S 、T (n為奇數),則 = .
⑸在等差數列{ a }中,S = a,S = b (n>m),則S = (a-b).
⑹等差數列{a }中, 是n的一次函數,且點(n, )均在直線y = x + (a - )上.
⑺記等差數列{a }的前n項和為S .①若a >0,公差d<0,則當a ≥0且a ≤0時,S 最大;②若a <0 ,公差d>0,則當a ≤0且a ≥0時,S 最小.
3.等比數列
等比公式:an=a1.q^(n-1)
等比求和:sn=a1(1-q^n)/(1-q)
=a1-an.q/(1-q)
⑴公比為q的等比數列,從中取出等距離的項,構成一個新數列,此數列仍是等比數列,其公比為q ( m為等距離的項數之差).
⑵對任何m、n ,在等比數列{ a }中有:a = a · q ,特別地,當m = 1時,便得等比數列的通項公式,此式較等比數列的通項公式更具有普遍性.
⑶一般地,如果t ,k,p,…,m,n,r,…皆為自然數,且t + k,p,…,m + … = m + n + r + … (兩邊的自然數個數相等),那麼當{a }為等比數列時,有:a .a .a .… = a .a .a .… ..
⑷若{ a }是公比為q的等比數列,則{| a |}、{a }、{ka }、{ }也是等比數列,其公比分別為| q |}、{q }、{q}、{ }.
⑸如果{ a }是等比數列,公比為q,那麼,a ,a ,a ,…,a ,…是以q 為公比的等比數列.
⑹如果{ a }是等比數列,那麼對任意在n ,都有a ·a = a ·q >0.
⑺兩個等比數列各對應項的積組成的數列仍是等比數列,且公比等於這兩個數列的公比的積.
⑻當q>1且a >0或0<q<1且a <0時,等比數列為遞增數列;當a >0且0<q<1或a <0且q>1時,等比數列為遞減數列;當q = 1時,等比數列為常數列;當q<0時,等比數列為擺動數列.
4.等比數列前n項和公式S 的基本性質
⑴如果數列{a }是公比為q 的等比數列,那麼,它的前n項和公式是S =
也就是說,公比為q的等比數列的前n項和公式是q的分段函數的一系列函數值,分段的界限是在q = 1處.因此,使用等比數列的前n項和公式,必須要弄清公比q是可能等於1還是必不等於1,如果q可能等於1,則需分q = 1和q≠1進行討論.
⑵當已知a ,q,n時,用公式S = ;當已知a ,q,a 時,用公式S = .
⑶若S 是以q為公比的等比數列,則有S = S +qS .⑵
⑷若數列{ a }為等比數列,則S ,S -S ,S -S ,…仍然成等比數列.
⑸若項數為3n的等比數列(q≠-1)前n項和與前n項積分別為S 與T ,次n項和與次n項積分別為S 與T ,最後n項和與n項積分別為S 與T ,則S ,S ,S 成等比數列,T ,T ,T 亦成等比數列.
㈤ 如何在數學教學中做到融會貫通
首先,六爻與八字的基礎是一樣的。基礎是真的很重要,如果你基礎不好,那麼融會貫通也只是想想而已。從題主描述的來看,題主的基礎應該是不怎麼好的。
其次,梅花是入門非常簡單,5分鍾就會起卦,但是想要精進是非常難的。而且預測就是這樣,你剛學的,斷的比學了很多年的還要准,因為人是有直覺的呀,但是很快的,這種直覺會消失,大概半年左右。
最後,想要融會貫通,最重要的還是要再每一個術數上面花費大量的時間,至少要做到中等以上的水平,這樣,你基礎穩固了,也知曉了周易的規律,那麼你就能做到融會貫通了,否則是非常難的
㈥ 考研數學怎樣才能融會貫通
基礎復習階段(一):這個階段我是從7月1日進入的。這時已經進入了高強度的復習階段。這段時間我主要看《復習指南》。這是一本400餘頁的厚書。我對這本書的評價是「博大精深」,不但總結了大綱要求的所有基礎知識和概念,同時還匯集了很多例題、習題,包括歷年考研真題。因此在預熱後踏踏實實地把這本書過一遍,對基礎知識和解題思路的掌握、理解非常有好處。看這本書時需要注意:
1)對基礎知識和概念一定用心領會和理解,如果有不懂的,必須藉助輔助資料搞清楚,做到這一點後方可看例題和習題。
2)對每道例題和習題,必須在看答案和解題思路前,自己先動手做一遍,然後再對照書上的答案和解題思路總結和反省,好好把感受寫在旁邊。用不同記號對題目進行標識。當時我主要分了三種情況:一是自己會做的,二是自己有正確思路,但不能完全寫出來,或者沒有做對的,三是自己沒有思路或思路錯誤的。做好這些標識,可以使自己後續復習中更有針對性。
3)一定要動筆做題。你自己可以做做試驗,把一道題看懂了,覺得沒有問題的時候,試試自己能否背著書流暢地寫下來。我相信大多數人是不能的。因此,我強烈建議在復習之初就養成動手的習慣,這是檢驗自己是否完全掌握的唯一標准。
4)一定要重視總結。看概念和知識要點的時候,要把一些重點詞句劃出來;對於開始不太懂的,理解之後一定也把自己的理解寫出來。做題時,對於前面講的第二、三種情況也一定要記下自己當時為什麼做不出來,今後看到何種典型題目,應該具備何種反應和思路。
5)這本厚書博大精深,匯聚了很多難題,因此第一遍復習時會遇到很多困難,甚至折磨。這時候需要告訴自己,這是正常現象。試想,如果你一拿到這本書就很容易地看下去,那麼就沒有復習的必要了。這階段,一定不能喪失信心,一定要堅持下來,一步一步地往前走。遇到實在搞不懂的問題,先放一放,有機會可以通過請教老師、同學或者查閱資料搞懂。事實上,有些問題會在以後的復習中「恍然大悟」。
基礎復習階段(二):這個階段與第一階段可以穿插進行。就我而言,我自己是從8月開始第二階段的。這個階段主要是利用聽輔導課的機會,對數學基礎知識進行第二遍「掃盪」。由於有了第一階段的基礎,聽課時已經有了一定的印象,因此基本上可以跟上老師的節奏。課後,結合課堂筆記和《復習指南》,再次鞏固。我覺得這兩個過程的交替進行,對大部分基礎知識都有了較好的理解和掌握。另外輔導班因人而異,我因為不喜歡去上人多的那種輔導班,所以上了個網校的,能反復聽課的那種,這樣方便來回鞏固老師講的內容。唯一不足是有一部分講義需要自己下載列印。網校名字叫天道考研網校,其他也有很多網校,我感覺這一家的相對好些吧。有句話叫「誠者,天之道也」,所以我對它們這個名字非常欣賞。
㈦ 怎樣學好數學
我以前數學也很差,但是在一個學期的時間里我就成功的攻破他。首先,對於所學知識要課前預習,找出自己部明白的地方,這樣在聽課時能更有針對性,效率很高。其次,對於所學的新課要在下課後即使溫習筆記。再者,要在課下做大量的習題加以鞏固,將不會做的題目多問老師,因為老師的解題方法會多樣化並會告訴你階梯思路和技巧。最後,要將錯題收集起來形成一個錯題集,反復看。還要定期將所學的知識進行歸納整理,理清思路和脈絡。
㈧ 數學是如何提升
1、預習
預習是上課前准備的一個過程,養成良好的預習習慣,有兩個好處:
(1).提前了解上課老師要講解的知識,從而可以達到更深了解的目的
(2).對自己在看書過程中不理解的地方,則會在上課的過程中聽的更仔細,能更有目的地聽課
2、上課認真聽講
這是提高數學的關鍵一步。在老師的帶領,能更快了解知識點
3、課後多做習題
數學的學習是艱難的,但也是簡單的。畢竟上課的時間是有限的,因此需要課後話費時間去仔細研究。多做習題可以幫助我們理解和掌握知識點,只有掌握知識點,才會發現數學很簡單。
4、課後認真復習
復習是必不可少的一步,只有經常復習,才能牢牢記住知識點,並在以後的學習中才能將知識點融會貫通。
㈨ 如何學會 微積分 高等數學 如何融會貫通
興趣是一切的根本,高等數學也不例外,高等數學公式是重要的,但是還要需要的是圖形與數學語言的雙重結合,書本中的知識是很死板的,建議你如果實在不行的話,去買本娛樂與學習雙結合的就行,特別是書本中的例題,還有就是圖形,這微積分只要是興趣,一切都可以,在高深的函數你也會,其實數形結合是最好的方法