導航:首頁 > 數字科學 > 數學如何變式

數學如何變式

發布時間:2022-04-03 13:20:34

1. 數學絕對值怎麼變式

應該是想問絕對值不等式吧

涉及到絕對值的不等式可以用圖形輔助理解

丨f(x)丨≥a

然後把函數在坐標軸上表達出來就可以得到x的相應范圍了。

2. 數學變式 怎麼變 用什麼公式

這不是一樣嘛,換個字母而已吧,字母只是代號和名字一樣,叫什麼無所謂

3. 數學變式問題

希望你能採納,不懂可追問。謝謝。

4. 在數學中變式指什麼

變式通過變換同類事物的非本質特徵的表現形式,變更觀察事物的角度和方法,從而突出事物的本質特徵,突出那些隱蔽的本質要素,讓學生在變式中思維,從而掌握事物的本質和規律。
變式是指通過變更對象的非本質特徵以突出對象的本質特徵而形成的表現形式。是指通過變更對象的本質特徵以突出對象的非本質特徵,從而顯示概念的內涵發生了變化。課題的表述常常把解決課題的特別關鍵的本質屬性「隱蔽」在非本質屬性之中,教師在教學時,就得啟發學生一步一步從非本質屬性中把本質屬性揭露出來。這就必須運用變式規律。變式是通過變更對象的非本質特徵的表現形式,讓學生在變式中思維,從而掌握事物的本質和規L

5. 數學變式教學

數學教學思維能力培養之我見

對學生思維能力的培養是數學教學三大能力之一.在平時的教學中,既要注重邏輯思維能力培養的同時,還應該注重觀察力、直覺力、想像力的培養。特別是直覺思維能力的培養由於長期得不到重視,學生在學習的過程中對數學的本質容易造成誤解,認為數學是枯燥乏味的;同時對數學的學習也缺乏取得成功的必要的信心,從而喪失數學學習的興趣。培養直覺思維能力是社會發展的需要,是適應新時期社會對人才的需求。
一、數學直覺思維的闡釋
數學直覺是具有意識的人腦對數學對象(結構及其關系)的某種直接的領悟和洞察。
直觀與直感都是以真實的事物為對象,通過各種感覺器官直接獲得的感覺或感知。例如等腰三角形的兩個底角相等,兩個角相等的三角形是等腰三角形等概念、性質的界定並沒有一個嚴格的證明,只是一種直觀形象的感知。而直覺的研究對象則是抽象的數學結構及其關系。龐加萊說:直覺不必建立在感覺明白之上.感覺不久便會變的無能為力。例如,我們仍無法想像千角形,但我們能夠通過直覺一般地思考多角形,多角形把千角形作為一個特例包括進來。由此可見直覺是一種深層次的心理活動,沒有具體的直觀形象和可操作的邏輯順序作思考的背景。正如迪瓦多內所說:這些富有創造性的科學家與眾不同的地方,在於他們對研究的對象有一個活全生的構想和深刻的了解,這些構想和了解結合起來,就是所謂』直覺』……,因為它適用的對象,一般說來,在我們的感官世界中是看不見的。
從思維方式上來看,思維可以分為邏輯思維和直覺思維。長期以來人們刻意的把兩者分離開來,其實這是一種誤解,邏輯思維與直覺思維從來就不是割離的。有一種觀點認為邏輯重於演繹,而直觀重於分析,從側重角度來看,此話不無道理,但側重並不等於完全,數學邏輯中是否會有直覺成分?數學直覺是否具有邏輯性?比如在日常生活中有許多說不清道不明的東西,人們對各種事件作出判斷與猜想離不開直覺,甚至可以說直覺無時無刻不在起作用。數學也是對客觀世界的反映,它是人們對生活現象與世界運行的秩序直覺的體現,再以數學的形式將思考的理性過程格式化。數學最初的概念都是基於直覺,數學在一定程度上就是在問題解決中得到發展的,問題解決也離不開直覺,下面我們就以數學問題的證明為例,來考察直覺在證明過程中所起的作用。
一個數學證明可以分解為許多基本運算或許多演繹推理元素,一個成功的數學證明是這些基本運算或演繹推理元素的一個成功的組合,彷彿是一條從出發點到目的地的通道,一個個基本運算和演繹推理元素就是這條通道的一個個路段,當一個成功的證明擺在我們面前開始,邏輯可以幫助我們確信沿著這條路必定能順利的到達目的地,但是邏輯卻不能告訴我們,為什麼這些路徑的選取與這樣的組合可以構成一條通道。事實上,出發不久就會遇上叉路口,也就是遇上了正確選擇構成通道的路段的問題。龐加萊認為,即使能復寫出一個成功的數學證明,但不知道是什麼東西造成了證明的一致性,……,這些元素安置的順序比元素本身更加重要。笛卡爾認為在數學推理中的每一步,直覺力都是不可缺少的。就好似我們平時打籃球,要靠球感一樣,在快速運動中來不及去作邏輯判斷,動作只是下意識的,而下意識的動作正是在平時訓練產生的一種直覺。
在教育過程中,老師由於把證明過程過分的嚴格化、程序化。學生只是見到一具僵硬的邏輯外殼,直覺的光環被掩蓋住了,而把成功往往歸功於邏輯的功勞,對自己的直覺反而不覺得。學生的內在潛能沒有被激發出來,學習的興趣沒有被調動起來,得不到思維的真正樂趣。《中國青年報》曾報道,約30%的初中生學習了平面幾何推理之後,喪失了對數學學習的興趣,這種現象應該引起數學教育者的重視與反思。

6. 小學數學如何進行變式教學

變式其實就是創新。當然變式不是盲目的變,應抓住問題的本質特徵,遵循學生認知心理發展,根據實際需要進行變式。實施變式訓練應抓住思維訓練這條主線,恰當的變更問題情境或改變思維角度,培養學生的應變能力,引導學生從不同途徑尋求解決問題的方法。通過多問、多思、多用等激發學生思維的積極性和深刻性。下面本人結合理論學習和數學課堂教學的實踐,談談在數學教學中如何進行變式訓練培養學生的思維能力。
一、在形成數學概念的過程中,利用變式啟發學生積極參與觀察、分析、歸納,培養學生正確概括的思維能力。
從培養學生思維能力的要求來看,形成數學概念,提示其內涵與外延,比數學概念的定義本身更重要。在形成概念的過程中,可以利用變式引導學生積極參與形成概念的全過程,讓學生自己去「發現」、去「創造」,通過多樣化的變式提高學生學習的積極性,培養學生的觀察、分析以及概括能力。
通過對式子的變形,可以對概念的理解逐漸加深,對概念中本質的東西有個非常清晰的認識,因此教師在以後的練習中也明確類似知識點的考查方向,防止教師盲目出題,學生盲目練習,在有限的時間內使得效益最大化。
二、在理解定理和公式的過程中,利用變式使學生深刻認知定理和公式中概念間的多種聯系,從而培養學生多向變通的思維能力。
數學思維的發展,還賴於掌握、應用定理和公式,去進行推理、論證和演算。由於定理和公式的實質,也是人們對於概念之間存在的本質聯系的概括,所以掌握定理和公式的關鍵在於明確理解定理和公式中概念的聯系,對於這種聯系的任何形式的機械的理解,是不能熟練、靈活應用定理和公式的根源,它是缺乏多向變通思維能力的結果。因此在定理和公式的教學中,也可利用變式,展現相關定理和公式之間的聯系以及定理、公式成立依附的條件,培養學生辨析與定理和公式有關的判斷,運用。
通過變式訓練,是要防止形式地、機械地背誦、套用公式和定理提高學生變通思考問題和靈活應用概念、公式以及定理的能力。
三、在解題教學中,利用變式來改變題目的條件或結論,揭示條件、目標間的聯系,解題思路中的方法之間的聯系與規律,從而培養學生聯想、轉化、推理、歸納、探索的思維能力。
(一)多題一解,適當變式,.培養學生求同存異的思維能力。
許多數學習題看似不同,但它們的內在本質(或者說是解題的思路、方法是一樣的),這就要求教師在教學中重視對這類題目的收集、比較,引導學生尋求通法通解,並讓學生自己感悟它們之間的內在聯系,形成數學思想方法。
(二)一題多解,觸類旁通,培養學生發散思維能力,培養學生思維的靈活性。
一題多解的實質是以不同的論證方式,反映條件和結論的必然本質聯系。在教學中教師應積極地引導學生從各種途徑,用多種方法思考問題。這樣,既可暴露學生解題的思維過程,增加教學透明度,又能使學生思路開闊,熟練掌握知識的內在聯系。這方面的例子很多,尤其是幾何證明題。通過一題多解,讓學生從不同角度思考問題、解決問題,可以引起學生強烈的求異慾望,培養學生思維的靈活性。
(三)一題多變,總結規律,培養學生思維的探索性和深刻性。
通過變式教學,不是解決一個問題,而是解決一類問題,遏制「題海戰術」,開拓學生解題思路,培養學生的探索意識,實現「以少勝多」。
伽利略曾說過「科學是在不斷改變思維角度的探索中前進的」。故而課堂教學要常新、善變,通過原題目延伸出更多具有相關性、相似性、相反性的新問題,深刻挖掘例習題的教育功能。
譬如書本上有這樣一道題,求證:順次連接四邊形各邊中點所得的四邊形是平行四邊形。教師可以不失時機地進行變式,調動起學生的思維興趣。變式(1)順次連接矩形各邊中點所得四邊形是什麼圖形?變式(2)順次連接菱形各邊中點所得四邊形是什麼圖形?變式(3)順次連接正方形各邊中點所得四邊形是什麼圖形?做完這四個練習,教師還可以進一步引導學生概括影響組成圖形形狀的本質的東西是原來四邊形的對角線所具有的特徵。
又如應用題教學是初中教學中的一個難點,在教學中就可以把同類型的題目通過變式的方式展現給學生,把學生的思維逐步引向深刻。
例如在講解一元一次方程的實踐和探究這節課時,教師從奧運冠軍孟關良訓練為題材編了一題關於追及問題的應用題,一膄快艇與孟關良的皮艇同在起點,快艇以每秒5米的速度先行了20米孟關良為了追上快艇,必須奮力前劃,同學們,請你想一想他如果以每秒6米的速度劃行多少秒才能追上快艇?然後教師可對本例作以下變式。
變式1:一膄快艇與孟關良的皮艇同在起點,快艇以每秒5米的速度先行了20秒,孟關良為了追上快艇,必須奮力前劃,同學們,請你想一想他如果以每秒6米的速度劃行多少秒才能追上快艇?(從先行20米改為先行了20秒)
變式2:我們學校有一塊300米的跑道在比賽跑步時經常會涉及到相遇問題和追及問題
現有甲、乙兩人比賽跑步,甲的速度是10米/秒,乙的速度是8米/秒,他們兩人同地出發
(1)兩人同時相向而行經過幾秒兩人相遇。
(2)兩人同時同向而行經過幾秒兩第一次相遇。
(3)乙先出發5秒,然後甲開始出發,問甲經過幾秒兩人第一次相遇。
這題該為平時學生熟悉的操場環形跑道,這里三題也是一組變式題,(1)、(2)是同時同地出發的相遇和追及問題,(3)是不同時出發相遇和追及問題,這題還蘊涵著分類討論的思想。
變式3:一膄快艇與孟關良的皮艇同在起點,快艇以每秒5米的速度先行了10秒,教練要求他用45秒追上快艇,孟關良為了追上快艇,必須奮力前劃,他以每秒6米的速度劃行,劃了5秒後他發現用這樣的速度不能在規定的時間內追上,請問他的想法用45秒不能追上快艇對不對?如果他要追上請你算一算孟關良後來要用多少速度才能在規定的時間內追上快艇?
這樣的變式覆蓋了同時出發相遇問題、不同時出發相遇問題、同時出發和不同時出發的追及問題等行程問題的基本類型。這樣通過一個題的練習既解決了一類問題,又歸納出各量之間最本質的東西,今後碰到類似問題學生思維指向必定準確,很好培養了學生思維的深刻性。學生也不必陷於題海而不能自拔。
(三)一題多問,通過變式引申發展,擴充、發展原有功能,培養學生的創新意識和探究、概括能力。
牛頓說過:「沒有大膽的猜想就做不出偉大的發現。」中學生的想像力豐富,因此,可以通過例題所提供的結構特點,鼓勵、引導學生大膽地猜想,以培養學生的創造性思維和發散思維。
教學中要特別重視對課本例題和習題的「改裝」或引申。數學的思想方法都隱藏在課本例題或習題中,我們在教學中要善於對這類習題進行必要的挖掘,即通過一個典型的例題,最大可能的覆蓋知識點,把分散的知識點串成一條線,往往會起到意想不到的效果,有利於知識的建構。
總之,在數學課堂教學中,遵循學生認知發展規律,根據教學內容和目標加強變式訓練,對鞏固基礎、培養思維、提高能力有著重要的作用。特別是,變式訓練能培養培養學生敢於思考,敢於聯想,敢於懷疑的品質,培養學生自主探究能力與創新精神。當然,課堂教學中的變式題最好以教材為源,以學生為本,體現出「源於課本,高於課本」,並能在日常教學中滲透到學生的學習中去。讓學生也學會「變題」,使學生自己去探索、分析、綜合,以提高學生的數學素質。

7. 這個數學變式怎麼來的

這個其實就是一個數學裡面的兩邊同時開根號。第一個就是兩邊同時開x根號。第二個就是兩邊同時開y次根號。

8. 小學數學教學如何運用變式和遷移進行教學

一、 創設情境激發遷移意識
一種學習對另一種學習的影響,就叫學習的遷移。從認知心理學的觀點看,無論在接受學習新知識或解決新問題的過程中,凡是有已形成的相關的認知結構就會產生知識、乃至方法的遷移 。而這些需要老師有意識地加以引導才會實現 。教學北師大版四年級下冊的《小數的意義》一課時,我先創設一個生活情境:有一天淘氣跟著媽媽到菜市場買菜,他發現一斤肉9.90元,一斤白菜2.20元,一斤地瓜2.35元。(投放到大屏幕上) 指名說說這些價格是幾元幾角幾分,學生很快就能說出答案,因為這是從學生的生活經驗中遷移過來的。接著讓學生說說淘氣媽媽買了這三樣東西一共需要多少錢,為什麼這樣算?學生也基本上能比較快地算出,也懂得相同數位進行相加減的道理,因為這是從學生的知識經驗中遷移過來的。最後讓學生說說每個數裡面的數位名稱,學生一時語塞,老師順勢引導,這是本節課要學的內容,相信同學們聯系以前學過的圓角分的知識會很快學會的。出示題目:1元=( )角 ,1元=( )分 1角=( )元 1分=( )元。本題由易及難,引導學生發現數的規律,新知與舊知是緊密聯系在一起的,從而輕而易舉地理解一角就是十分之一元,也就是0.1元,一分是一百分之一元,就是0.01元。最後回到前面的情境中,9.90元第一個9表示9元,是整數部分,第二個9表示的是9角,在小數點右邊第一位,是十分之九元,0.9元,這一位叫做十分位,表示把一個數平均分成十分,取其中的幾份,就是零點幾,接著讓學生說說2.35元每一個數位名稱及數位上數字表示的意義,然後追問小數點右邊第三位是什麼位,表示什麼,學生很快就能說出答案。這樣再讓學生打開書本自學小數數位順序表,教學效果達到事半功倍的作用。一學年來我從情境創設中不斷讓學生體會學習遷移的重要性,激發他們主動尋找遷移的知識點和生長點。
二、引導自主學習培養遷移能力
小學數學新的課程標准要求教師切實轉變教學觀念,使數學課堂成為學生自主學習的樂園,讓學生主動參與到數學活動中,自己去獲取、鞏固和深化知識,扎扎實實激發學生創新意識,培養學生創新思維和創新能力,而遷移能力就是一種創新能力。
教學中以導為主,以講為輔
著名心理學家皮亞傑說過:兒童學習的最根本途徑應該是活動,活動是認識發展的直接源泉。所以教學中我充分調動學生的眼口手腦等多種感官參與活動。例如教學四年級下冊《文具店》(小數乘法)一課時,我讓學生們在課堂上吆喝起來,賣鉛筆啦,一把0.3元,尺子一把0.4元,轉筆刀一個0.6元,同學們紛紛表示要買,我讓學生自主選擇要什麼,買多少,需要付多少錢,算對了直接寫上答案找老師領物品(模型),學生興致勃勃,計算正確率特別高。本節課學生雖然初步接觸小數乘法,但深諳整數乘法的意義,再加上有趣的數學活動,學生對求幾個相同的小數用乘法計算理解得非常透徹。
鼓勵質疑,調動主體意識
問題是學生主動學習的最初源泉,是點燃學生思維的火花,是學生保持探索的動力,正如古人雲:學起於思,思源於疑。教學中,我根據學生的認知規律以及心理特徵巧妙製造懸念,誘發學生學習興趣,大膽質疑,積極討論,充分地調動學習主動性,從而更深刻地認識到自己是學習的主體。例如我在教學四年級下冊《誰打電話的時間長》(除數是小數的除法)時,我先問學生兩個人在打電話,一個打到安海,一個打到貴州,通話時間一樣長,誰的電話費多?讓學生了解長途電話比短途電話貴得多這個事實。接下來拋出問題:小紅和小華一起去公共電話亭打電話,小紅打國內電話,每分鍾0.7元,她花了8.54元,小華打國際電話,每分鍾7.2元,他花了45元,你們知道誰打電話的時間長?先讓學生猜測並談談理由,有的說小紅打的時間長,因為她的電話費便宜,有的說小華打的時間長,因為他花的錢多。真是公說公有理婆說婆有理,最後還是得用事實數據來證明——計算。怎麼算?請兩個同學(中等生)在黑板上算,其他同學做在本子上,之後繼續討論。板演的兩種答案分別是:8.54÷0.7=1.22(分) 45÷7.2=0.625(分) ̄;8.54÷0.7=12.2(分)45÷7.2=6.25(分)誰的答案才是正確的呢?學生一臉疑惑,我因勢利導,說:大家想一想怎樣驗證誰的答案才是正確的呢?整數除法的驗算方法派上用場了,學生馬上把這種方法遷移過來,「用商乘以除數看是否等於被除數」學生脫口而出,接下來又是一番的計算,找到正確答案,可是這又跟商的小數點要跟被除數的小數點對齊互相矛盾(觀察除法豎式),學生的思維在這里又產生碰撞,又一陣嘰嘰喳喳,這時我提醒學生翻開書本看看智慧爺爺解決問題的方法,學生恍然大悟,把除數先化成整數,再把被除數擴大相同的倍數,這是上學期剛學過的商不變性質,學習遷移在這里起到撥亂反正的作用。至此學生對於除數是小數的除法的計算方法牢記在心,後面的課堂練習進行

9. 數學變式訓練

兩種思路:
一,把挖水渠整體看作1,那每個人每天工作量1/280
二,總工程看作20×14=280,兩天後剩餘280-20×2

閱讀全文

與數學如何變式相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:748
乙酸乙酯化學式怎麼算 瀏覽:1413
沈陽初中的數學是什麼版本的 瀏覽:1367
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:896
數學c什麼意思是什麼意思是什麼 瀏覽:1424
中考初中地理如何補 瀏覽:1314
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1405
如何回答地理是什麼 瀏覽:1038
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1495
二年級上冊數學框框怎麼填 瀏覽:1715
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1014
武大的分析化學怎麼樣 瀏覽:1257
ige電化學發光偏高怎麼辦 瀏覽:1346
學而思初中英語和語文怎麼樣 瀏覽:1671
下列哪個水飛薊素化學結構 瀏覽:1433
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1073