㈠ 以中國數學家命名的數學公式
中國數學至少有五千年的悠久歷史.中國數學家為數學王國增添宏豐著述,有些定理、公式被人視為稀世之珍,並以他們的名字留芳後世,實令華夏子孫驕傲和煩揚. 1.商高定理.商高(約公元前12世紀)是周朝的大夫,精通天文.他發現勾股定理的特例(勾三股四弦五),曾被人稱「商高定理」. 2.徽率*.劉徽(約225年一約295年),他用擺布算籌計算到圓內接正3072邊形的面積,求得二二3927/125。。3.1416的當時世界最高記錄,在實用算術上他主張用二=157/50「3 .14,故後人把3.14或157/50這個『值稱為「徽率」.(李迪《中國數學史簡編》84年版P .10.1). 3.祖率.祖沖之(429年一500年)算出保持千年的,值的世界紀錄.日本數學家三上義夫將祖沖之的「密律」355/113稱為「祖率,(同第2條一書中P.115) 4.祖啦原理.祖吃(5世紀一6世紀)是祖沖之的兒子.祖氏父子提出:「幕(指面積)勢(指高)既同,則積(指體積)不容異」.這就是現行《立體幾何》書上「等高處的截面積相等,則兩立體的體積相等」的「祖吃原理」.
㈡ 萬能公式是怎麼命名的
這樣的老師……我都不知道怎麼吐槽才好了…… 壯哉我大銻星
㈢ 數學裡面如何命名級數
自然數集:N實數集:R有理數集:Q無理數集:R-Q正整數集:N*或N+整數集:Z 復數集:C
㈣ 數學由來短一點的
數學,起源於人類早期生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。其演進可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。
除了如何去數實際物質的數量,人類亦了解了如何去數抽象物質的數量,如年份。算術也自然而然地產生了。
㈤ 關於數學的故事(要短)
很多,自己選:)
那是1618年11月,笛卡兒在軍隊服役,駐扎在荷蘭的一個小小的城填布萊達。一天,他在街上散步,看見一群人聚集在一張貼布告的招貼牌附近,情緒興奮地議論紛紛。他好奇地走到跟前。但由於他聽不懂荷蘭話,也看不懂布告上的荷蘭字,他就用法語向旁邊的人打聽。有一位能聽懂法語的過路人不以為然的看了看這個年青的士兵,告訴他,這里貼的是一張解數學題的有獎競賽。要想讓他給翻譯一下布告上所有的內容,需要有一個條件,就是士兵要給他送來這張布告上所有問題的答案。這位荷蘭人自稱,他是物理學、醫學和數學教師別克曼。出乎意料的是,第二天,笛卡兒真地帶著全部問題的答案見他來了;尤其是使別克曼吃驚地是,這位青年的法國士兵的全部答案竟然一點兒差錯都沒有。於是,二人成了好朋友,笛卡兒成了別克曼家的常客。
笛卡兒在別克曼指導下開始認真研究數學,別克曼還教笛卡兒學習荷蘭語。這種情況一直延續了兩年多,為笛卡兒以後創立解析幾何打下了良好的基礎。而且,據說別克曼教笛卡兒學會的荷蘭話還救過笛卡兒一命:
有一次笛卡兒和他的僕人一起乘一艘不大的商船駛往法國,船費不很貴。沒想到這是一艘海盜船,船長和他的副手以為笛卡兒主僕二人是法國人,不懂荷蘭語,就用荷蘭語商量殺害他們倆搶掠他們錢財的事。笛卡兒聽懂了船長和他副手的話,悄悄做准備,終於制服了船長,才安全回到了法國。
八歲的高斯發現了數學定理
他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。
這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。
「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。
教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。
還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」
老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。
可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」
數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?
高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。
小歐拉智改羊圈
歐拉是數學史上著名的數學家,他在數論、幾何學、天文數學、微積分等好幾個數學的分支領域中都取得了出色的成就。不過,這個大數學家在孩提時代卻一點也不討老師的喜歡,他是一個被學校除了名的小學生。
事情是因為星星而引起的。 當時,小歐拉在一個教會學校里讀書。有一次,他向老師提問,天上有多少顆星星。老師是個神學的信徒,他不知道天上究竟有多少顆星,聖經上也沒有回答過。其實,天上的星星數不清,是無限的。我們的肉眼可見的星星也有幾千顆。這個老師不懂裝懂,回答歐拉說:"天有有多少顆星星,這無關緊要,只要知道天上的星星是上帝鑲嵌上去的就夠了。"
歐拉感到很奇怪:"天那麼大,那麼高,地上沒有扶梯,上帝是怎麼把星星一顆一顆鑲嵌到一在幕上的呢?上帝親自把它們一顆一顆地放在天幕,他為什麼忘記了星星的數目呢?上帝會不會太粗心了呢?
他向老師提出了心中的疑問,老師又一次被問住了,漲紅了臉,不知如何回答才好。老師的心中頓時升起一股怒氣,這不僅是因為一個才上學的孩子向老師問出了這樣的問題,使老師下不了台,更主要的是,老師把上帝看得高於一切。小歐拉居然責怪上帝為什麼沒有記住星星的數目,言外之意是對萬能的上帝提出了懷疑。在老師的心目中,這可是個嚴重的問題。
在歐拉的年代,對上帝是絕對不能懷疑的,人們只能做思想的奴隸,絕對不允許自由思考。小歐拉沒有與教會、與上帝"保持一致",老師就讓他離開學校回家。但是,在小歐拉心中,上帝神聖的光環消失了。他想,上帝是個窩囊廢,他怎麼連天上的星星也記不住?他又想,上帝是個獨裁者,連提出問題都成了罪。他又想,上帝也許是個別人編造出來的傢伙,根本就不存在。
回家後無事,他就幫助爸爸放羊,成了一個牧童。他一面放羊,一面讀書。他讀的書中,有不少數學書。
爸爸的羊群漸漸增多了,達到了100隻。原來的羊圈有點小了,爸爸決定建造一個新的羊圈。他用尺量出了一塊長方形的土地,長40米,寬15米,他一算,面積正好是600平方米,平均每一頭羊佔地6平方米。正打算動工的時候,他發現他的材料只夠圍100米的籬笆,不夠用。若要圍成長40米,寬15米的羊圈,其周長將是110米(15+15+40+40=110)父親感到很為難,若要按原計劃建造,就要再添10米長的材料;要是縮小面積,每頭羊的面積就會小於6平方米。
小歐拉卻向父親說,不用縮小羊圈,也不用擔心每頭羊的領地會小於原來的計劃。他有辦法。父親不相信小歐拉會有辦法,聽了沒有理他。小歐拉急了,大聲說,只有稍稍移動一下羊圈的樁子就行了。
父親聽了直搖頭,心想:"世界上哪有這樣便宜的事情?"但是,小歐拉卻堅持說,他一定能兩全齊美。父親終於同意讓兒子試試看。
小歐拉見父親同意了,站起身來,跑到准備動工的羊圈旁。他以一個木樁為中心,將原來的40米邊長截短,縮短到25米。父親著急了,說:"那怎麼成呢?那怎麼成呢?這個羊圈太小了,太小了。"小歐拉也不回答,跑到另一條邊上,將原來15米的邊長延長,又增加了10米,變成了25米。經這樣一改,原來計劃中的羊圈變成了一個25米邊長的正方形。然後,小歐拉很自信地對爸爸說:"現在,籬笆也夠了,面積也夠了。"
父親照著小歐拉設計的羊圈紮上了籬笆,100米長的籬笆真的夠了,不多不少,全部用光。面積也足夠了,而且還稍稍大了一些。父親心裡感到非常高興。孩子比自己聰明,真會動腦筋,將來一定大有出息。
父親感到,讓這么聰明的孩子放羊實在是及可惜了。後來,他想辦法讓小歐拉認識了一個大數學家伯努利。通過這位數學家的推薦,1720年,小歐拉成了巴塞爾大學的大學生。這一年,小歐拉13歲,是這所大學最年輕的大學生。
從一加到一百
高斯有許多有趣的故事,故事的第一手資料常來自高斯本人,因為他在晚年時總喜歡談他小時後的事,我們也許會懷疑故事的真實性,但許多人都證實了他所談的故事。
高斯的父親作泥瓦廠的工頭,每星期六他總是要發薪水給工人。在高斯三歲夏天時,有一次當他正要發薪水的時候,小高斯站了起來說:「爸爸,你弄錯了。」然後他說了另外一個數目。原來三歲的小高斯趴在地板上,一直暗地裡跟著他爸爸計算該給誰多少工錢。重算的結果證明小高斯是對的,這把站在那裡的大人都嚇的目瞪口呆。
高斯常常帶笑說,他在學講話之前就已經學會計算了,還常說他問了大人字母如何發音後,就自己學著讀起書來。
七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:「把 1到 100的整數寫下來,然後把它們加起來!」每當有考試時他們有如下的習慣:第一個做完的就把石板〔當時通行,寫字用〕面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。
數學家高斯的故事
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
數學家華羅庚小時候的軼事
華羅庚(1910——1982)出生於江蘇太湖畔的金壇縣,因出生時被父親華老祥放於籮筐以圖吉利,「進籮避邪,同庚百歲「,故取名羅庚。
華羅庚從小便貪玩,也喜歡湊熱鬧,只是功課平平,有時還不及格。勉強上完小學,進了家鄉的金壇中學,但仍貪玩,字又寫得歪歪扭扭,做數學作業時倒時滿認真地畫來畫去,但像塗鴉一般,所以上初中時的華羅庚仍不被老師喜歡的學生而且還常常挨戒尺。
金壇中學的一位名叫王維克的教員卻獨有慧眼,他研究了華羅庚塗鴉的本子才發現這許多塗改的地方正反映他解題時探索的多種路子。一次王維克老師給學生講[孫子算經]出了這樣一道題:」今有物不知其數,三三數之剩其二,五五數剩其三,七七數剩其二,問物幾何?「正在大家沉默之際,有個學生站起來,大家一看,原來是向來為人瞧不起的華羅庚,當時他才十四歲,你猜一猜華羅庚他說出是多少?
陳景潤:小時候,教授送我一顆明珠
20多年前,一篇轟動全中國的報告文學《哥德巴赫猜想》,使得一位數學奇才一夜之間街知巷聞、家喻戶曉。在一定程度上,這個人的事跡甚至還推動了一個尊重科學、尊重知識和尊重人才的偉大時代早日到來。他的名字叫做陳景潤。
不善言談,他曾是一個「丑小鴨」。通常,一個先天的聾子目光會特別犀利,一個先天的盲人聽覺會十分敏銳,而一個從小不被人注意、不受人歡迎的「丑小鴨」式的人物,常常也會身不由己或者說百般無奈之下窮思冥想,探究事理,格物致知,在天地萬物間重新去尋求一個適合自己的位置,發展自己的潛能潛質。你可以說這是被逼的,但這么一「逼」往往也就「逼」出來不少偉人。比如童年時代的陳景潤。陳景潤1933年出生在一個郵局職員的家庭,剛滿4歲,抗日戰爭開始了。不久,日寇的狼煙燒至他的家鄉福建,全家人倉皇逃入山區,孩子們進了山區學校。父親疲於奔波謀生,無暇顧及子女的教育;母親是一個勞碌終身的舊式家庭婦女,先後育有12個子女,但最後存活下來的只有6個。陳景潤排行老三,上有兄姐、下有弟妹,照中國的老話,「中間小囡軋扁頭「,加上他長得瘦小孱弱,其不受父母歡喜、手足善待可想而知。在學校,沉默寡言、不善辭令的他處境也好不到哪裡去。不受歡迎、遭人欺負,時時無端挨人打罵。可偏偏他又生性倔強,從不曲意討饒,以求改善境遇,不知不覺地便形成了一種自我封閉的內向性格。人總是需要交流的,特別是孩子。稟賦一般的孩子面對這種困境可能就此變成了行為乖張的木訥之人,但陳景潤沒有。對數字、符號那種天生的熱情,使得他忘卻了人生的艱難和生活的煩惱,一門心思地鑽進了知識的寶塔,他要尋求突破,要到那裡面去覓取人生的快樂。所謂因材施教,就是通過一定的教育教學方法和手段,為每一個學生創造一個根據自己的特點充分得到發展的空間。
小小陳景潤,自己對自己因材施教著。
一生大幸,小學生邂逅大教授但是,他畢竟還是個孩子。除了埋頭書卷,他還需要面對面、手把手的引導。畢竟,能給孩子帶來最大、最直接和最鮮活的靈感和歡樂的,還是那種人與人之間的、耳提面命式的,能使人心靈上迸射出輝煌火花的交流和接觸。所幸,後來隨著家人回到福州,陳景潤遇到了他自謂是終身獲益匪淺的名師沈元。
沈元是中國著名的空氣動力學家,航空工程教育家,中國航空界的泰斗。他本是倫敦大學帝國理工學院畢業的博士、清華大學航空系主任,1948年回到福州料理家事,正逢戰事,只好留在福州母校英華中學暫時任教,而陳景潤恰恰就是他任教的那個班上的學生。
大學名教授教幼童,自有他與眾不同、出手不凡的一招。針對教學對象的年齡和心理特點,沈元上課,常常結合教學內容,用講故事的方法,深入淺出地介紹名題名解,輕而易舉地就把那些年幼的學童循循誘入了出神入化的科學世界,激起他們嚮往科學、學習科學的巨大熱情。比如這一天,沈元教授就興致勃勃地為學生們講述了一個關於哥德巴赫猜想的故事。
師手遺「珠「,照亮少年奮斗的前程
「我們都知道,在正整數中,2、4、6、8、10......,這些凡是能被2整除的數叫偶數;1、3、5、7、9,等等,則被叫做奇數。還有一種數,它們只能被1和它們自身整除,而不能被其他整數整除,這種數叫素數。「
像往常一樣,整個教室里,寂靜地連一根綉花針掉在地上的聲音都能聽見,只有沈教授沉穩渾厚的嗓音在回響。
「二百多年前,一位名叫哥德巴赫的德國中學教師發現,每個不小於6的偶數都是兩個素數之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反復復的,哥德巴赫對許許多多的偶數做了成功的測試,由此猜想每一個大偶數都可以寫成兩個素數之和。」沈教授說到這里,教室里一陣騷動,有趣的數學故事已經引起孩子們極大的興趣。
「但是,猜想畢竟是猜想,不經過嚴密的科學論證,就永遠只能是猜想。」這下子輪到小陳景潤一陣騷動了。不過是在心裡。
該怎樣科學論證呢?我長大了行不行呢?他想。後來,哥德巴赫寫了一封信給當時著名的數學家歐勒。歐勒接到信十分來勁兒,幾乎是立刻投入到這個有趣的論證過程中去。但是,很可惜,盡管歐勒為此幾近嘔心瀝血,鞠躬盡瘁,卻一直到死也沒能為這個猜想作出證明。從此,哥德巴赫猜想成了一道世界著名的數學難題,二百多年來,曾令許許多多的學界才俊、數壇英傑為之前赴後繼,競相折腰。教室里已是一片沸騰,孩子們的好奇心、想像力一下全給調動起來。
「數學是自然科學的皇後,而這位皇後頭上的皇冠,則是數論,我剛才講到的哥德巴赫猜想,就是皇後皇冠上的一顆璀璨奪目的明珠啊!」
沈元一氣呵成地講完了關於哥德巴赫猜想的故事。同學們議論紛紛,很是熱鬧,內向的陳景潤卻一聲不出,整個人都「痴」了。這個沉靜、少言、好冥思苦想的孩子完全被沈元的講述帶進了一個色彩斑斕的神奇世界。在別的同學嘖嘖贊嘆、但贊嘆完了也就完了的時候,他卻在一遍一遍暗自跟自己講:
「你行嗎?你能摘下這顆數學皇冠上的明珠嗎?」
一個是大學教授,一個是黃口小兒。雖然這堂課他們之間並沒有嚴格意義上的交流、甚至連交談都沒有,但又的確算得上一次心神之交,因為它奠就了小陳景潤一個美麗的理想,一個奮斗的目標,並讓他願意為之奮斗一輩子!多年以後,陳景潤從廈門大學畢業,幾年後,被著名數學家華羅庚慧眼識中,伯樂相馬,調入中國科學院數學研究所。自此,在華羅庚的帶領下,陳景潤日以繼夜地投入到對哥德巴赫猜想的漫長而卓絕的論證過程之中。
1966年,中國數學界升起一顆耀眼的新星,陳景潤在中國《科學通報》上告知世人,他證明了(1+2)!
1973年2月,從「文革「浩劫中奮身站起的陳景潤再度完成了對(1+2)證明的修改。其所證明的一條定理震動了國際數學界,被命名為「陳氏定理」。不知道後來沈元教授還能否記得自己當年對這幫孩子們都說了些什麼,但陳景潤卻一直記得,一輩子都那樣清晰。
㈥ 數學名言越短越好
數學的本質在於它的自由。 ――康托爾
數統治著宇宙。 ――畢達哥拉斯
數學是無窮的科學。 ――赫爾曼外爾
㈦ 數學符號的由來(簡短)
符號的由來
㈧ 數學教育活動名稱命名方式有哪些
數學(mathematics、maths)是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。 數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學已成為許多國家及地區的教育范疇中的一部分。
㈨ 數學的由來(簡短一點)
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算.數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的.這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究.
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備.但尚未出現極限的概念.
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換.在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明.隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發展。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術.第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。
除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年.算術(加減乘除)也自然而然地產生了。
㈩ 以數學家名字命名的數學定理和公式
平面幾何中的定理大多數都是由數學家名字命名的。太多了
梅涅勞斯(Menelaus)定理:
塞瓦(Ceva)定理:
西摩松(Simson)定理:若從△ABC外接圓上一點P作三邊的垂線,三垂足分共線。
托勒密定理:圓內接四邊形中,兩條對角線的乘積(兩對角線所包矩形的面積)等於兩組對邊乘積之和(一組對邊所包矩形的面積與另一組對邊所包矩形的面積之和).
笛沙格定理
歐拉公式