⑴ 要做程序員需要具備哪些基礎才能開始學習程序員課程的
主要學的內容如下:
1.游戲程序設計:C++程序設計入門;基本數據類型和輸入輸出;流程式控制制語句;數組、指針和引用、函數;程序結構和書寫規;范結構體和聯合體、類;繼承與多態;異常處理與程序調試。
2.演算法與數據結構:演算法分析;數據結構;基本演算法;STL的概念與使用;靜態庫與動態庫;XML庫的使用。
3.Win32程序設計:Windows程序入門;Windows消息;GDI繪圖游戲工具與MFC;網路編程基礎。
4.游戲數學和智能應用:游戲中的坐標系;矢量、矩陣;幾何碰撞;物理模擬;人工智慧與尋路演算法。
5.2D游戲技術與應用:2D游戲技術概論;游戲地圖系統;GUI系統;戰斗系統設計;任務系統;優秀的聲音引擎BASS;Cocos2D-X引擎;Box2D物理引擎。
想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。
祝你學有所成,望採納。
⑵ 高級程序員需要具備的數學知識有哪些
最開始我也不知道有啥關系,直到大三的時候看一些圖像處理的書
卧槽!矩陣是干這個用的啊
⑶ 作為一名合格的程序員,請問需要掌握哪些數學知識,學到什麼樣的水平
程序員的知識是多方面的, 數學方面至少高等數學大專以上文化程度,概率統計,數字邏輯運算方面的知識,主要就是做哪一方面的程序設計,有些學過的可能長期也不用,搞科學研究的、游戲、智能軟體開發、安全方面的要求就高一些,沒有一定數學基礎有些演算法書就讀不懂,搞社會一般應用的要求相對較低一些,這些只是常識,程序員關鍵一點把一門課及相關知識精通,可以把用戶提出的問題很快的自己能夠理解,轉換成計算機處理方式,成為軟體或網站,而且和用戶的需求基本一致。當然有些人的數學水平並不高,設計出的軟體人人愛用,水平很高,程序員的知識包括數學方面的知識也在不斷充實更新中。
⑷ 程序員需要怎樣的數學基礎
LZ不要杞人憂天了,那些說數學重要的,首先數學你會嗎?數學包含的范疇太多了,常見的有高等幾何 微積分 線性代數 概率論 離散數學 數論 圖論等等你指的是具體哪一樣呢?就算是前人科學巨匠泰鬥牛頓,毆幾里德,愛因斯坦,他也只是擅長自己從事的那領域,要說所有數學領域都精通我想他們也不敢吹這樣的牛逼。
所以對大多數人來說,在數學方面都不太可能取得什麼很深的造詣。等到你所謂的把數學學好,那鬍子都快白完了,數學是又深奧又費解學習成本巨大需要耗費大量時間學完不用立馬就忘的學科。所以說數學重要,先問問你自己能不能學會。
其次,計算機學科跟數學根本就不是一門學科, 包含內容極其有限。計算機編程有自己的理論知識體系,很多跟數學關系不大。學好編程尤其對新手來說最重要的是對你學的編程語言的熟練運用和工具SDK的爛熟於心。每個語言都有自己獨特的設計理念,不存在什麼好學的編程語言。
所以說,題主, 你想得太遠了。軟體開發需要用到的知識比數學重要的太多了。拋開計算機不說,英語比起數學的重要性就大的多的多。英語不好你看不懂函數API說明你一切就是白瞎。而數學對於大多數人來說是最難學也是最不重要的知識,基本上是學了就忘忘了就扔扔了也沒感覺的那種,很多搞編程的可能一輩子也用不到數學知識。為什麼?理解C++的指針和多態需要數學嗎?一個復雜的系統架構也不需要半點數學知識,而你就是看不懂。
還有就是程序調試技術,很多IDE給出的出錯語句非常費解,什麼指針為空,數組越界,內存溢出,SDK找不到, 你沒經驗時打死你也看不懂你的編程工具提示的是什麼。這時你那高大上的數學真是P用沒有,它能幫你排查錯誤找出程序崩掉的原因嗎?我看不行吧,你還是得到論壇網路去問人家這些基本的問題。
在你擔心數學好不好之前,你更應該關心編程環境怎麼搭建,連IDE都搞不定不知道程序怎麼跑起來你還搞什麼呀,下一步就是程序基本的語法和SDK庫函數的掌握,基本SDK都不知道什麼意思怎麼去用,如字元串函數,文件讀寫和資料庫常用操作,這些你都不會你還有學下去的必要嗎?還有更重要的更基本的程序調試技術,程序老出錯老崩潰怎麼辦呀,哪裡變數為空了內存寫錯了?為什麼程序老編不過去呀,誰能幫幫我呀!!!這個時候你發現那牛逼的數學知識真是屁用沒有,你還是感嘆自己基本功底不行經驗太少,這個時候打死你也不會再關心數學好不好的問題了。
如果說用到數學的大概只有3D游戲引擎,很智能的人工智慧,如格鬥游戲的電腦應對玩家的復雜AI,生化危機中僵屍怪物的配合商量運用策略包抄玩家和記憶功能,還有航空航天領域這樣高精尖技術學科才會用到復雜一點的數學知識。而這些都是計算機專家才要掌握的內容。所以題主你是想多了,還是先關心下自己程序為什麼編不過老是報錯的問題吧
⑸ 做一個程序員數學不好怎麼辦
一般做演算法方面的事情,對程序員數學方面的要求就會高一些;但如果是做一名的普通程序員其實對數學的要求沒那麼高,很多初、高中生的學歷,0基礎也可以學開發,將來一樣能做程序員。而且,像變數這種知識點比較簡單也比較基礎,都涉及不到太深的數學方面的東西。所以,我覺得也許是你對變數這個知識點可能掌握得不是那麼好。學習開發,學習方法也很重要,這塊兒咱們可以私信交流。另外,學習上總會遇到各種各樣的問題,不管你學開發還是學其它的什麼,要放平心態,心態不能崩;放棄是件很容易的事情,但只有堅持下來,你才有可能成為一名優秀的程序員。加油!
⑹ 程序員應具備怎樣得數學基礎
看你要做什麼樣的程序員。
如果就是一般的做計算機軟體的程序員,幾乎不需要什麼數學基礎,當然,如果你有一些離散數學的基礎是最好不過了。
但如果你要做計算機特殊領域的程序員,比如,人工智慧,模式識別,數據加密,數據壓縮,數字圖像等等,那就需要相關的數學基礎了,包括微積分、線性代數、概率論、統計學、數論等等。
蓋茨曾經說過,不要過分誇大數學對軟體的重要性。
⑺ 程序員怎樣學數學:編程是小菜一碟
課前預習閱讀。預習課文時,要准備一張紙、一支筆,將課本中的關鍵詞語、產生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助於理解課文,還能幫助我們在課堂上集中精力聽講元旦有三天的小長假放,這著實讓我開心了一把,要知道初三的學業繁重,為了在中考上取得好成績,一個星期只放一天假,每天晚上還有晚自習要上,一點課余時間還要拿來做作業、背書,整天都埋在書堆里,恨不得把自己拆成兩半來使。所以,好不容易可以休息一下,怎能不開心呢?只是,估計老天看不得我得意的樣子,今年元旦只放一天假,第二天接著上課。這也代表星期六也要接著上課。這個消息對我來說簡直是晴天霹靂,我真是欲哭無淚啊!我只能安慰自己:還好還好,元旦還是放假的,起碼有一天可以休息,總比沒有好…,有重點地聽講
⑻ 軟體開發的程序員需要掌握多的數學知識
需要數學,但是這個數學不是說你現在學的數學這點知識,而是你是邏輯思維,如果你僅僅是想成為一個程序員,只是一個寫代碼的人,那你數學不需要太好,但是,如果你真想好好從事計算機這方面,尤其是想軟體開發,你必須得學好數學,計算機本來就是從數學里分支出來的,你越往上走也就越接近數學,你相信嗎,一個計算機的頂級專家不會寫代碼的人大有人在,什麼是程序。有一本書是,程序=數據結構+演算法。任何一門語言給你兩個月你都能把基本的學的差不多,就想蓋房子,寫代碼的程序員就相當於磚匠,你永遠成不了設計師。一個大的正規的項目,有80%的時間是在設計,設計有哪些模塊,用什麼技術,怎麼架構這個項目,怎麼通信等等。。。。而等設計完了20%的時間給程序員把代碼寫出來。寫了這么多,你自己好好想想,隨便問一個高手,看看那個會告訴你計算機不需要數學,
需要注意的是,數學課本里的具體知識、公式,而是一種數學的思維方式、邏輯思維能力。最後祝你能夠堅持走這條路,好運。
⑼ 程序員怎麼學
1、掌握數據及其轉換、數據的機內表示、算術和邏輯運算,以及相關的應用數學基礎知識;
2、理解計算機的組成以及各主要部件的性能指標;
3、掌握操作系統、程序設計語言的基礎知識;
4、熟練掌握計算機常用辦公軟體的基本操作方法;
5、熟練掌握基本數據結構和常用演算法;
6、熟練掌握C程序設計語言,以及C++、Java、Visual Basic中的一種程序設計語言;
7、熟悉資料庫、網路和多媒體的基礎知識;
8、掌握軟體工程的基礎知識,了解軟體過程基本知識、軟體開發項目管理的常識;
9、了解常用信息技術標准、安全性,以及有關法律、法規的基本知識;
10、了解信息化、計算機應用的基礎知識;
11、正確閱讀和理解計算機領域的簡單英文資料。
(9)程序員如何學數學擴展閱讀
做為一名程序員至少熟練掌握兩到三種開發工具的使用,這是程序員的立身之本,其中C/C++和JAVA是重點推薦的開發工具,C/C++以其高效率和高度的靈活性成為開發工具中的利器,很多系統級的軟體還是用C/C++編寫。
而JAVA的跨平台和與WEB很好的結合是JAVA的優勢所在,而JAVA即其相關的技術集JAVAOne很可能會成為未來的主流開發工具之一。
其次,能掌握一種簡便的可視化開發工具,如VB,PowerBuilder,Delphi,CBuilder,則更好,這些開發工具減小了開發難度,並能夠強化程序員對象模型的概念。
另外,需要掌握基本的腳本語言,如shell,perl等,至少能讀懂這些腳本代碼。
⑽ 程序員怎樣學數學
First: programmers don't think they need to know math. I hear that so often; I hardly know anyone who disagrees. Even programmers who were math majors tell me they don't really use math all that much! They say it's better to know about design patterns, object-oriented methodologies, software tools, interface design, stuff like that. 首先:程序員不認為他們需要了解數學.我常常聽到這樣的話;我不知道還有沒有不同意的.甚至於以前是主修數學的程序員也告訴我他們真的不是常常使用到數學!他們說更重要的是要去了解設計模式,面向對象原理,軟體工具,界面設計,以及一些其他類似的東西. And you know what? They're absolutely right. You can be a good, solid, professional programmer without knowing much math. 你了解嗎?他們完全正確.你不需要了解很多數學你就能做個很棒,很專業的程序員. But hey, you don't really need to know how to program, either. Let's face it: there are a lot of professional programmers out there who realize they're not very good at it, and they still find ways to contribute. 但是呢,同時你也不是真的需要知道如何來編程.我們要面對的是:有很多專業的程序員,他們認識到他們不是非常擅長數學,但他們還是尋找方法去提升. If you're suddenly feeling out of your depth, and everyone appears to be running circles around you, what are your options? Well, you might discover you're good at project management, or people management, or UI design, or technical writing, or system administration, any number of other important things that "programmers" aren't necessarily any good at. You'll start filling those niches (because there's always more work to do), and as soon as you find something you're good at, you'll probably migrate towards doing it full-time. 如果你突然覺得自己好爛,周圍的人都遠遠的超過你,你會怎麼想呢?好,你可能會發現自己善於項目管理,或人事管理,或界面設計,或技術寫作,或系統管理,還有許多其他程序員不必去精通的.你會開始堆積那些想法(因為工作永遠干不完),當你發現一些你能掌握的東西時,你很可能會轉移去全職的做這個工作. In fact, I don't think you need to know anything, as long as you can stay alive somehow. 實際上,我認為有些東西你不需要了解,當前你還能夠賴以生存的話. So they're right: you don't need to know math, and you can get by for your entire life just fine withoutit. 所以他們是對的:你不需要了解數學,並且沒有數學你也能過的很好. But a few things I've learned recently might surprise you: 但是最近我學到一些東西可能會讓你也感到驚喜: They teach math all wrong in school. Way, WAY wrong. If you teach yourself math the right way, you'll learn faster, remember it longer, and it'll be much more valuable to you as a programmer. 學校里教數學的方式都錯了.僅僅是教學的方法錯了,不是教數學本身錯.如果你以正確的方式學習數學的話,你會學的更快,記住這點,對你,作為一個程序員來說很有價值. Knowing even a little of the right kinds of math can enable you do write some pretty interesting programs that would otherwise be too hard. In other words, math is something you can pick up a little at a time, whenever you have free time. 哪怕了解一點點相關的數學知識,就能讓你寫出可愛有趣的程序,否則會有些小難度.換句話講,數學是可以慢慢學的,只要你有時間. Nobody knows all of math, not even the best mathematicians. The field is constantly expanding, as people invent new formalisms to solve their own problems. And with any given math problem, just like in programming, there's more than one way to do it. You can pick the one you like best. 沒人能了解所有的數學,就是最棒的數學家也不是.當人們發明新的形式去解決自己的問題時,數學領域就不斷的擴展.一些給出的數學問題,也正如編程,不止一種方法可以去解決他.你可以挑個你最喜歡的方式. Math is... ummm, please don't tell anyone I said this; I'll never get invited to another party as long as I live. But math, well... I'd better whisper this, so listen up: (it's actually kinda fun.) 數學是......嗯,請別告訴別人我說過這個哈;當然我也不指望誰能邀請我參加這樣的派對,在我還活著的時候.但是,數學其實就是......我還是小聲的說吧,聽好了:(她其實就是一種樂趣啦!) The Math You Learned (And Forgot) 你學到的數學(和你忘了的數學) Here's the math I learned in school, as far as I can remember: 這兒是我能記得的在學校學到的數學: Grade School: Numbers, Counting, Arithmetic, Pre-Algebra ("story problems") 初中:數,數數,算術知識,初級代數("帶問題的小故事") High School: Algebra, Geometry, Advanced Algebra, Trigonometry, Pre-Calculus (conics and limits) 高中:代數,幾何,高等代數,三角學,微積分先修課 (二次曲線論和極限) College: Differential and Integral Calculus, Differential Equations, Linear Algebra, Probability and Statistics, Discrete Math 大學:微積分,微分公式,線性代數,概率和統計,離散數學 How'd they come up with that particular list for high school, anyway? It's more or less the same courses in most U.S. high schools. I think it's very similar in other countries, too, except that their students have finished the list by the time they're nine years old. (Americans really kick butt at monster-truck competitions, though, so it's not a total loss.) 上面那個關於高中數學課程單子上所列的,怎麼來著?美國高中幾乎都是這樣的課程設置.我認為其他國家也會很相似的,除了那些在9歲之前就掌握了這些課程的學生.(美國小孩同時卻在熱衷於玩魔鬼卡車競賽,雖然如此,整個來說也算不上什麼大損失.) Algebra? Sure. No question. You need that. And a basic understanding of Cartesian geometry, too. Those are useful, and you can learn everything you need to know in a few months, give or take. But the rest of them? I think an introction to the basics might be useful, but spending a whole semester or year on them seems ridiculous. 代數?是的.沒問題.你需要代數.和一些理解解析幾何的知識.那些很有用,並且在以後幾個月里,你能學到一切你想要的,十拿九穩的.剩下的呢?我認為一個基本的介紹可能會有用,但是在這上面花整個學期或一年就顯得很荒謬了. I'm guessing the list was designed to prepare students for science and engineering professions. The math courses they teach in and high school don't help ready you for a career in programming, and the simple fact is that the number of programming jobs is rapidly outpacing the demand for all other engineering roles. 我現在意識到那個書單列表原是設計來准備給那些以後要當科學家和工程師的學生的.他們在高中里所教的數學課程並不是為你的編程生涯做准備的,簡單的事實是,多數的編程工作所需要的數學知識相比其他作為工程師角色的人所需要的數學增長的更快. And even if you're planning on being a scientist or an engineer, I've found it's much easier to learn and appreciate geometry and trig after you understand what exactly math is — where it came from, where it's going, what it's for. No need to dive right into memorizing geometric proofs and trigonometric identities. But that's exactly what high schools have you do. 即使你打算當一名科學家或者一名工程師,在你理解了什麼是數學之後-- 數學它如何而來,如何而去,為何而生,我發現這更加容易去學習和欣賞幾何學和三角學.不必去專研記住幾何上的證明和三角恆等式,雖然那確實是高中學校要求你必須去做的. So the list's no good anymore. Schools are teaching us the wrong math, and they're teaching it the wrong way. It's no wonder programmers think they don't need any math: most of the math we learned isn't helping us. 所以這樣的書單列表不再有什麼用了.學校教給我們的不是最合適的數學,並且方式也不對.不奇怪程序員認為他們不再需要數學:我們學的大部分數學知識對我們的工作沒什麼大的幫助. The Math They Didn't Teach You 他們沒有教給你的那部分數學 The math computer scientists use regularly, in real life, has very little overlap with the list above. For onething, most of the math you learn in grade school and high school is continuous: that is, math on the real numbers. For computer scientists, 95% or more of the interesting math is discrete: i.e., math on the integers. 在現實中,計算機科學家經常使用的數學,跟上面所列的數學僅有很小的重疊. 舉個例子,你在中學里學的大部分數學是連續性的:也就是說,那是作為實數的數學.而對於計算機科學家來說,他們所感興趣的95%也許更多的是離散性的:比如,關於整數的數學. I'm going to talk in a future blog about some key differences between computer science, software engineering, programming, hacking, and other oft-confused disciplines. I got the basic framework for these (upcoming) insights in no small part from Richard Gabriel's Patterns Of Software, so if you absolutely can't wait, go read that. It's a good book. 我打算在以後的博客中再談一些有關計算機科學,軟體工程,編程,搞些有趣的東東,和其他常常令人犯暈的訓練.我已經從Richard Gabriel的軟體的模式這本書中洞察到一個無關巨細的基本框架.如果你明顯的等不下去的話,去讀吧.是本不錯的書. For now, though, don't let the term "computer scientist" worry you. It sounds intimidating, but math isn't the exclusive purview of computer scientists; you can learn it all by yourself as a closet hacker, and be just as good (or better) at it than they are. Your background as a programmer will help keep you focused on the practical side of things. 到現在為止,不要讓"計算機科學家"這個詞困擾到你.它聽上去很可怕,其實數學不是計算機科學家所獨有的領域,你也能作為一個黑客自學它,並且能做的和他們一樣棒.你作為一個程序員的背景將會幫助你保持只關注那些有實踐性的部分. The math we use for modeling computational problems is, by and large, math on discrete integers. Thisis a generalization. If you're with me on today's blog, you'll be studying a little more math from now on than you were planning to before today, and you'll discover places where the generalization isn't true. But by then, a short time from now, you'll be confident enough to ignore all this and teach yourself math the way you want to learn it. 我們用來建立計算模型的,大體上是離散數學.這是普遍的做法.如果正好今天你在看這篇博客,從現在起你正了解到更多的數學,並且你會認識到那樣的普遍做法是不對的.從現在開始,你將有信心認為可以忽略這些,並以你想要的方式自學. For programmers, the most useful branch of discrete math is probability theory. It's the first thing they should teach you after arithmetic, in grade school. What's probability theory, you ask? Why, it's counting. How many ways are there to make a Full House in poker? Or a Royal Flush? Whenever you think ofa question that starts with "how many ways..." or "what are the odds...", it's a probability question. And as it happens (what are the odds?), it all just turns out to be "simple" counting. It starts with flipping acoin and goes from there. It's definitely the first thing they should teach you in grade school after you learn Basic Calculator Usage. 對程序員來說,最有效的離散數學的分支是概率理論.這是你在學校學完基本算術後的緊接著的課.你會問,什麼是概率理論呢?你就數啊,看有多少次出現滿堂彩?或者有多次是同花順. 不管你思考什麼問題如果是以"多少種途徑..."或"有多大幾率的...",那就是離散問題.當他發生時,都轉化成"簡單"的計數.拋個硬幣看看...? 毫無疑問在他們教你基本的計算用法後他們會教你概率理論. I still have my discrete math textbook from college. It's a bit heavyweight for a third-grader (maybe), but it does cover a lot of the math we use in "everyday" computer science and computer engineering. 我還保存著大學里的離散數學課本.可能他只佔了三分之一的課程,但是它卻涵蓋了我們幾乎每天計算機編程工作大部分所用到的數學. Oddly enough, my professor didn't tell me what it was for. Or I didn't hear. Or something. So I didn't pay very close attention: just enough to pass the course and forget this hateful topic forever, because I didn't think it had anything to do with programming. That happened in quite a few of my comp sci courses in college, maybe as many as 25% of them. Poor me! I had to figure out what was important on my own, later, the hard way. 也真是夠奇怪的,我的教授從沒告訴我數學是用來干嗎的.或者我也從來沒有聽說過.種種原因吧.所以我也從沒有給以足夠的注意:只是考試及格然後把他們都忘光,因為我不認為她還和編程有啥關系.事情變化是我在大學學完一些計算機科學的課程之後,也許是25%的課程.可憐啊!我必須弄明白什麼對於自己來說是最重要的,然後再是向深度發展. I think it would be nice if every math course spent a full week just introcing you to the subject, in themost fun way possible, so you know why the heck you're learning it. Heck, that's probably true for every course. 我想,如果每門數學課都花上整整一周的時間,而只是介紹讓你如何入門的話,那將非常不錯,這是最有意思的一種假設,那麼你知道了你正學習的對象是哪種怪物了.怪物,大概對每一門課都合適. Aside from probability and discrete math, there are a few other branches of mathematics that are potentially quite useful to programmers, and they usually don't teach them in school, unless you're a math minor. This list includes: 除了概率和離散數學外,還有不少其他的數學分支,可能對程序員相當的有用,學校通常不會教你的,除非你的輔修科目是數學.這些數目列表包括: Statistics, some of which is covered in my discrete math book, but it's really a discipline of its own. A pretty important one, too, but hopefully it needs no introction. 統計學,其中一些包括在我的離散數學課里,她的某些訓練只限於她自身.自然也是相當重要的,但想學的話不需要什麼特別的入門. Algebra and Linear Algebra (i.e., matrices). They should teach Linear Algebra immediately after algebra. It's pretty easy, and it's amazingly useful in all sorts of domains, including machine learning. 代數和線性代數(比如,矩陣).他們會在教完代數後立即教線性代數.這也簡單,這但相當多的領域非常有用,包括機器學習. Mathematical Logic. I have a really cool totally unreadable book on the subject by Stephen Kleene, the inventor of the Kleene closure and, as far as I know, Kleenex. Don't read that one. I swear I've tried 20 times, and never made it past chapter 2. If anyone has a recommendation for a better introction to this field, please post a comment. It's obviously important stuff, though. 數理邏輯.我有相當完整的關於這門學科的書沒有讀,是Stephen Kleene寫的,克林閉包的發明者,我所知道的還有就是Kleenex.這個就不要讀了.我發誓我已經嘗試了不下20次,卻從沒有讀完第二章.如果哪位牛掰有什麼更好的入門建議的話可以給我推薦.雖然,這明顯是非常重要的一部分. Information Theory and Kolmogorov Complexity. Weird, eh? I bet none of your high schools taught either of those. They're both pretty new. Information theory is (veeery roughly) about data compression, and Kolmogorov Complexity is (also roughly) about algorithmic complexity. I.e., how small you can you make it, how long will it take, how elegant can the program or data structure be, things like that. They're both fun, interesting and useful. 信息理論和柯爾莫戈洛夫復雜性理論.真不可思議,不是么?我敢打賭沒哪個高中會教你其中任何一門課程.她們都是新興的學科.信息理論是(相當相當相當相當難懂)關於數據壓縮,柯爾莫戈洛夫復雜性理論是(同樣非常難懂)關於演算法復雜度的.也就是說,你要把它壓縮的盡量小,你所要花費的時間也就變的越長,同樣的,程序或數據結構要變得多優雅也有同樣的代價.他們都很有趣,也很有用. There are others, of course, and some of the fields overlap. But it just goes to show: the math that you'll find useful is pretty different from the math your school thought would be useful. 當然,也有其他的一些因素,某些領域是重復的.也拿來說說吧:你所發現有用的那部分數學,不同於那些你在學校里認為有用的數學. What about calculus? Everyone teaches it, so it must be important, right? 那微積分呢?每個人都學它,所以它也一定是重要的,不對嗎?