1. 怎樣培養小學生的數學思想
如何培養小學生的數學思想
小學數學解題中會涉及到許多數學思想方法,重視對這些數學思想方法的滲透和運用,能增加學生的學習興趣,啟迪學生的思維,發展學生的數學智能,培養學生的創新意識和實踐能力;有利於學生領悟數學的真諦,學會數學地思考問題,掌握解決數學問題的途徑、手段和策略,提高學生的數學素養及分析問題和解決問題的能力。
一、轉化的思想方法
轉化是解決數學問題常用的思想方法。轉化就是將有待解決或未解決的問題,通過某種轉化手段,歸結為另一個相對比較容易解決的或者已經有解決程序的問題,以求得問題的解答。小學數學解題中,遇到一些數量關系復雜、隱蔽而難以解決的問題時,可通過轉化,使生疏的問題熟悉化、抽象的問題具體化、復雜的問題簡單化,從而順利解決問題。
二、數形結合的思想方法
數形結合思想方法,就是把問題的數量關系和空間形式結合起來去分析問題、解決問題,其實質是將抽象的數學語言與直觀的圖形結合起來,使得抽象的數學概念或復雜的數量關系直觀化、形象化、簡單化。小學數學解題中,有些問題數量關系復雜,用一般的思考方法難以發現解題線索,可以把題中的條件和問題用圖形直觀形象地表示出來,然後「按圖索驥」,便能很快發現解題的線索,使問題迅速得到解決。
三、假設的思想方法
假設是一種常用的推測性的數學思想方法。小學數學解題中,有些問題數量關系比較隱蔽,難以建立數量之間的聯系,或數量關系抽象,無從下手。可以根據問題的具體情況合理假設,由此得出一些關系和結論,產生差異與矛盾,通過分析與思考,找出差異的原因,使復雜問題簡單化,數量關系明朗化,從而達到解決問題的目的。
四、整體的思想方法
整體的思想方法就是從整體觀點出發,有意識地放大思考問題的「視角」, 縱觀全局,通過研究問題的整體形式、整體結構、整體特徵,並對其進行調節和轉化,從而使問題得到解決。小學數學解題中,有些問題從每個部分或條件去思考不易解決時,可以把問題的各個部分或條件作為一個整體,全面考慮,往往能收到意想不到的效果,使繁難的問題得到迅速巧妙的解決。
2. 怎樣培養小學生的數學思想
數學思想是指現實世界的空間形式和數量關系反映到人們的意識之中,經過思維活動而產生的結果。數學思想含有傳統數學思想的精華和現代數學思想的基本特徵,並且是歷史地發展著的。通過數學思想的培養,數學的能力才會有一個大幅度的提高。掌握數學思想,就是掌握數學的精髓。
小學數學教材中滲透的數學思想方法主要有:數形結合、集合、對應、分類、函數、極限、化歸、歸納、符號化、數學建模、統計、假設、代換、比較、可逆等思想方法。教學中,要明確滲透數學思想方法的意義,認識數學思想方法是數學的本質之所在、是數學的精髓,只有方法的掌握、思想的形成,才能使學生受益終生。
下面我就如何向學生滲透這些數學思想方法分別舉例說明一下。
一、數形結合思想方法
1.先形後數。一年級的小學生剛開始學習數學,是從具體的物體開始認數,從具體形象到抽象。
2.先數後形。如教學排隊問題:一年級小同學排隊做操,從前往後數,小明排第5,從後往前,小明排第4,這一對共有幾人?小同學很容易地將4與5相加,得出錯誤的結果。如果讓學生用畫圖的方法解答,用「△」代表排隊的小朋友,這道題很容易解決。
二、對應思想
例如,求一個數比另一個數多(少)幾的應用題的數量關系。對二年級學生來說較為抽象。我是這樣設計的:蘋果有8個,梨有6個,蘋果比梨多幾個?學生通過用○、△等學具代替蘋果、梨擺一擺,或用畫一畫的方法得到了解決。
再如,數軸上的點與實數之間的一一對應等把抽象內容的數量關系視覺化、具體化、形象化,化深奧為淺顯。同時,鼓勵了學生的創新,使學生樂於參與這樣的數學活動。
三、分類思想
分類是根據教學對象的本質屬性的異同按某種標准,將其劃分為不同種類,即根據教學對象的共同性與差異性,把具有相同屬性的歸入一類,把具有不同屬性的歸入另一類進行分析研究。分類是數學發現的重要手段,在教學中,如果對學過的知識恰當地進行分類,就可以使大量紛繁的知識具有條理性。一般分類時要求滿足互斥,無遺漏、最簡便的原則。如整數以能否被2整除為例,可分為奇數和偶數;若以自然數的約數個數來分類,則可分為質數、合數和1。幾何圖形中的分類更常見,如學習「角的分類」時,涉及到許多概念,而這些概念之間的關系滲透著量變到質變的規律。其中幾種角是按照度數的大小,從量變到質變來分類的,由此推理到在三角形中以最大一個角大於、等於和小於90°為分類標准,可分為鈍角三角形、直角三角形和銳角三角形。而三角形以邊的長短關系為分類標准,又可分為不等邊三角形和等邊三角形,等邊三角形又可分為正三角形和等腰三角形。通過分類,建構了知識網路,不同的分類標准會有不同的分類結果,從而產生新的數學概念和數學知識的結構。
四、化歸思想
化歸是數學中最普遍使用的一種思想方法。它是通過變形把要解決的問題,化歸為某個已經解決的問題,從而求得原問題的解決。其基本思想是:將待解決的問題甲,通過某種轉化過程,歸結為一個已經解決或者比較容易解決的問題乙,然後通過乙問題的解答返回去求得原問題甲的解答。這種化歸思想不同於一般所講的「轉化」、「轉換」,它具有不可逆轉的單向性。它的基本形式有:化難為易,化生為熟,化繁為簡,化整為零,化曲為直等。在小學數學中蘊藏著各種可運用化歸的方法進行解答的內容,讓學生初步學會化歸的思想方法。如:教學圓面積的計算方法,這里要推導出圓面積公式,在推導過程中,採用把圓分成若乾等份,然後拼成一個近似長方形,從而推導出圓的面積公式。這里把圓剪拼成近似長方形的過程,就是把曲線形化歸為直線形的過程。
再如平行四邊形的面積推導,當我通過創設情境使學生產生迫切要求出平行四邊形面積的需要時,便將「怎樣計算平行四邊形的面積」直接拋向學生,讓學生獨立自由地思考。這個完全陌生的問題,需學生調動所有的相關知識及經驗儲備,尋找可能的方法,解決問題。當學生將沒有學過的平行四邊形的面積計算轉化成已經學過的長方形的面積的時候,要讓學生明確兩個方面:
一是在轉化的過程中,把平行四邊形剪一剪、拼一拼,最後得到的長方形和原來的平行四邊形的面積是相等的(即等積轉化)。在這個前提之下,長方形的長就是平行四邊形的底,寬就是平行四邊形的高,所以平行四邊形的面積就等於底乘高。
二是在轉化完成之後,應提醒學生反思「為什麼要轉化成長方形的」。因為長方形的面積先前已經會計算了,所以,將不會的生疏的知識轉化成了已經會了的、可以解決的知識,從而解決了新問題。在此過程中轉化的思想也就隨之潛入學生的心中。其他圖形的教學亦是如此。
五、集合思想方法。
小學數學教材中蘊涵著大量的集合思想,集合的思想和概念滲透於數學教學的各個階段,我們不僅向學生傳授知識,而且要把含在教材中的集合思想有意識地對學生進行滲透,這樣有利於培養學生的抽象概括能力,有利於提高學生分析和解決問題的能力。教材採用直觀手段,利用圖形和實物滲透集合的思想方法。如:在教學求8和12的最大公約數時,可以製作課件或幻燈片,讓學生從圖中可以清楚直觀地知道8和12的公約數是1、2和4,最大公約數是4,這樣孕伏了交集的思想。
此外,還有類比思想、建模思想、組合思想、極限思想等,在此不一一列舉。在小學數學教學中都應注意有目的、有選擇、適時地進行滲透。滲透數學思想方法的策略有很多我認為:
1、在知識形成過程中滲透。
數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有「形」的,而數學思想方法卻隱含在數學知識體系裡,是無「形」的,並且不成體系地分散在教材各章節之中。因此數學思想方法必須通過具體的教學過程加以實現。在教學中,要重視概念的形成過程;引導學生對定理、公式的探索、發現、推導的過程;最後再引導學生歸納得出結論。
2、在問題解決過程中滲透。
數學思想方法存在於問題的解決過程中,數學問題的步步轉化無不遵循著數學思想方法的指導。數學思想方法在解決數學問題的過程中佔有舉足輕重的地位。滲透數學思想方法,不僅可以加快和優化問題解決的過程,而且還可以達到,會一題而明一路,通一類的效果。通過滲透,盡量讓學生達到對數學思想方法內化的境界,提高獨立獲取知識的能力和獨立解決問題的能力。
3、在反復運用過程中滲透。
在抓住學習重點、突破學習難點及解決具體數學問題中,數學思想方法是處理這些問題的精髓,這些問題的解決過程,無一不是數學思想方法反復運用的過程,因此,時時注意數學思想方法的運用既有條件又有可能,這是進行數學思想方法教學行之有效的普遍途徑.數學思想方法也只有在反復運用中,得到鞏固與深化。
總之,重視加強對學生進行數學思想方法的滲透不但有利於提高課堂教學效率,而且有利於提高學生的數學文化素養和思維能力。但是,對學生數學思想方法的滲透不是一朝一夕就能見到學生數學能力提高的,而是有一個過程。因此,在教學過程中,要有機地結合數學知識的內容,做到持之以恆、循序漸進和反復訓練,才能使學生真正地領悟數學思想方法,實現質的飛躍。
3. 小學數學里有哪些基本的數學思想方法
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
4. 如何培養小學生的數學學習思維
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
5. 如何培養小學生數學思維
數學知識是人類智慧的結晶,是人類生產生活的重要工具。我們在運用數學知識的同時,離不開我們的思維能力。思維是人腦對客觀事物的一般特性和規律的一種間接的、概括的反映過程。進行思維訓練,培養學生的思維能力,是小學數學教學的主要任務之一,是實施素質教育開發學生智能,提高學生素質的重要措施。那麼,小學生的數學思維能力有什麼特點呢?如何培養小學生的思維能力呢?下面就談談我個人的體會和做法。
小學生的數學思維能力四個特點
小學生直觀形象思維能力較強。小學生總是對自己見到、摸到、嗅到、聽到的事物感興趣,能夠留下深刻的印象。例如:一年級的學生計算5+2等於幾時,有一部分學生不能馬上回答出來,但如果你叫他數小棒,這時,你再問他等於多少,他馬上就會回答出來。其實,小孩並不是不知道5+2等於幾,而是因為他們的年齡還小,對事物的認識和思維過程總是與具體的事物聯系在一起的。
小學生抽象概括能力較弱。小學生的抽象概括能力較弱,他們對抽象概念的理解總是藉助於對直觀事物的了解。例如,教學三角形的認識時,我讓學生分組用紙折出或者用小剪刀裁剪出所學圖形,再來總結三角形圖形的特點,這樣學生就容易說出三角形的特徵。
小學生有效思維的時間較短。由於小學生自我控制能力弱,因此,小學生注意力集中的時間較短,那麼學生有效思維的時間就較短。如果我們教師一節課大部分時間都在進行新授內容的學習,而不變換花樣,課堂教學效果肯定不會太好。
小學生思維的內容淺顯,缺乏靈活性。例如:「有10個★,先剪掉2個★,再剪掉3個★,還剩幾個★?」教學時,大多數學生都正向思維,先求剪掉2個★後還剩下多少個★,再減去3個★,求出現在五角星的個數。要求現在還剩幾個五角星,可以先算剪掉的★有多少個,再用總數減去剪掉的5個★,得出現在的五角星的個數。這一變化,學生學習起來就困難多了,這與學生年齡尚小的思維特點是分不開的。
培養小學生思維能力的幾項舉措
在觀察中發展學生的思維能力。小學生的思維處於由具體形象思維向抽象思維過渡的階段,而低年級兒童的思維還是以具體形象思維為主,他們對新鮮、形象生動的事物非常敏感,有濃厚的興趣和強烈的求知慾,喜歡在歡樂中學習和生活,從而忽略了隱蔽的、本質的東西。因此,在教學中採用多種新穎、直觀的教學方法,運用色彩鮮艷的圖片,生動形象的教具,數學游戲來吸引學生的注意,激發他們的興趣,引導兒童從大量的感性認識中經過自己的直覺思維理解和掌握所學內容,達到發展兒童思維能力的目的。
例如:《數一數》這一課時,我根據低年級學生好奇心強,易沖動的年齡特點,先讓學生尋找自己身上的數,學生爭先恐後,興奮地回答:「我有1個腦袋,1張嘴,2隻手,10個手指……」立刻激活了課堂氣氛,學生激起了學習的慾望,思維活躍起來了,大家帶著求知的心理走進新課。接著我讓學生觀察他們新的學習環境——教室,讓他們尋找教室里的數,學生好奇地尋找:「教室里有1張講台桌,2 扇門,4個大窗戶,8盞燈……」最後我又帶領學生到校園進行參觀,尋找校園中的數,學生興趣盎然。使學生親身感受到數學來源於生活,激發了學生學習數學的興趣,知道數學是有用的知識,對數學產生了親切感。整節課學習中學生都呈現一種積極的思維狀態。
另外,現代化的教學技術使靜態變成了動態,以感知調動學生的積極性,使學生從小養成自己動腦、獨立思考的好習慣。例如,在教學加減法混合計算4-2+3=?時,我在多媒體教室里運用電腦技術,展示了一個畫面:一個池塘里有4隻天鵝,先遊走了2隻,又游來了3隻,提問:現在池塘里有多少只天鵝哪?讓學生認真的觀察,生動的畫面吸引了學生,喚起了他們的求知慾望,激發了思維,使學生很快的掌握了加減混合計算的方法。
在操作中發展兒童的思維能力。低年級學生年紀小的特點,學生動手操作是他們展開思維、獲取知識的重要途徑。學生動手操作學具,讓他們實際數一數、畫與畫、擺一擺、折一折、拼一拼,符合兒童生性好動、好奇的生理特徵,有利於引發學生學習數學的興趣,從而促進教學內容的深化,使學生的理解進一步深入,提高學生思維的廣闊性和靈活性,培養學生初步的抽象概括能力。
例如:講除法的初步認識「平均分」這節課時,學生對「平均分」這一概念不理解,我在教學中就利用直觀的教具來幫助學生突破這一難點。我先拿來20小棒,按照7、6、4、3的順序分給4個人,然後我問「同學們分得同樣多嗎?」學生回答「不是」。後來,我一個一個的分,正好每人都分得5根。學生大聲說「每個人分得的小棒同樣多,這就是平均分。」在這里學生對「平均分」這一抽象的概念的理解正是藉助直觀的實物來實現的,否則,學生在「平均分」這一概念的理解上不但會不理解,而且還會耗費不少寶貴的時間。
在語言表達中發展兒童思維能力。由於小學低年級學生剛入學不久,所學知識很少,語言區域狹窄更缺乏數學語言,時常不能用准確的數學語言表達清楚一件事情,這會直接影響到學生的學習。數學教學實踐表明:語言表達能力增強了,能有力地促進思維的發展。因此,小學低年級數學教學加強學生的語言訓練特別重要,教師要從認數、數數開始根據教材的不同內容,進行看圖說意,讀句說意,多向說意,說算式,說操作過程,說算理等多種形式的說意訓練,使他們把表象的材料,用准確的語言敘述出來,形成思維過程。培養學生的數學語言表達能力不是一朝一夕的事,要做到持之以恆,循序漸進。
用詞准確。首先要正確使用單位名稱,如一棵樹、一朵花、一個人、一架飛機等。其次是准確運用數學術語。結合操作,演示觀察圖形,教學生說一句完整的、准確的數學語言,如帶有方位名詞的句子及誰比誰多、誰比誰少的句子等。最後結合數的認識和計算的教學,指導學生說幾句連貫的數學語言,如敘述計算的說理過程等。
說完整句子,表達完整意思的口頭訓練。如教師在引導學生做一般應用題時,可先讓學生審題,指出它的已知條件和所求,並分析題中的數量關系,有理有據地確定解題思路,然後引導學生用清楚、准確和有條理的語言把它表達出來。
口述數量關系,運算過程,解題思路和訓練。例如,在教學一位數的減法時,要結合教具,要求學生看清楚教具的擺放過程說出題意:老師走左手裡有8根小棒,拿走3根小棒,剩下5根小棒,即8-3=5。經常對學生進行看圖說話的訓練,不但提高了學生的口頭表達能力,也為以後進一步學習簡單應用題打下了基礎。我們對學生進行語言訓練要貫穿教學的全過程,培養學生把看與說、做與說、想與說、有機的結合起來,讓學生在感受到的情景中接受語言訓練,由形象到抽象,疏通了學生思維與語言上的障礙,使新知識更清晰,更明確,同是也發展了學生的語言表達能力和思維能力。
總之,數學教學與思維密切相關,數學能力具有和一般能力不同的特性,因此在發展學生思維能力的努力中,不僅要考慮到能力的一般要求,而且要深入數學活動和數學思維的特點,尋求數學活動的規律,讓學生的數學思維能力在課堂學習中得到充分的發展。培養學生的數學思維能力,全面提高學生的素質。
6. 淺談如何在小學數學課堂教學中滲透數學思想方法
數學課程標准總體目標的第一條就明確提出:「讓學生獲得適應未來社會生活和進一步發展所必需的重要數學知識(包括數學事實、數學活動經驗)以及基本的數學思想方法和必要的應用技能。」美國教育心理家布魯納也指出:掌握基本的數學思想方法,能使數學更易於理解和更利於記憶,領會基本數學思想和方法是通向遷移大道的「光明之路」。在人的一生中,最有用的不僅是數學知識,更重要的是數學的思想方法和數學的意識,因此數學的思想方法是數學的靈魂和精髓。掌握科學的數學思想方法對提升學生的思維品質,對數學學科的後繼學習,對其它學科的學習,乃至對學生的終身發展都具有十分重要的意義。在小學數學教學中,教師有計劃、有意識地滲透一些數學思想方法,是實施素質教育,發展學生能力,提高數學能力,減輕學生課業負擔的重要舉措,在課程數學改革中有舉足輕重的位置。那麼,在小學數學教學中,究竟應如何滲透數學思想方法呢?
一、轉變觀念,重視挖掘數學思想方法。
數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有「形」的,而數學思想方法卻隱含在數學知識體系裡,是無「形」的,並且不成體系地散見於教材各章節中。教師講不講,講多講少,隨意性較大,常常因教學時間緊而將它作為一個「軟任務」擠掉。對於學生的要求是能領會多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時納入教學目的,把數學思想方法教學的要求融入備課環節。其次要深入鑽研教材,努力挖掘教材中可以進行數學思想方法滲透的各種因素,對於每一章每一節,都要考慮如何結合具體內容進行數學思想方法滲透,滲透哪些數學思想方法,怎麼滲透,滲透到什麼程度,應有一個總體設計,提出不同階段的具體教學要求。在小學數學教學中,教師不能僅僅滿足於學生獲得正確知識的結論,而應該著力於引導學生對知識形成過程的理解。讓學生逐步領會蘊涵其中的數學思想方法。也就是說,對於數學教學重視過程與重視結果同樣重要。教師要站在數學思想方面的高度,對其教學內容,用恰當的語言進行深入淺出的分析,把隱蔽在知識內容背後的思想方法提示出來。例如,圓的認識概念教學,可以按下列程序進行:(1)由實物抽象為幾何圖形,建立圓的表象;(2)在表象的基礎上,指出圓的半徑、直徑及其特點,使學生對圓有一個更深層次的認識;(3)利用圓的各種表象,分析其本質特徵,抽象概括為用文字語言表達的圓的概念;(4)使圓的有關概念符號化。顯然,這一數學過程,既符合學生由感知到表象再到概念的認知規律,又能讓學生從中體會到教師是如何應用數學思想法,對有聯系的材料進行對比的,對空間形式進行抽象概括的,對教學概念進行形式化的。
二、 相機而動,及時引入數學思想方法。
為了更好地在小學數學教學中滲透數學思想方法,教師不僅要對教材進行研究,潛心挖掘,而且還要講究思想滲透的手段和方法。小學階段,數學思想方法的滲透一般常用直觀法、問題法、反復法和剖析法。所謂直觀法就是以圖表形式將數學思想方法直觀化、形象化。直觀法的觀點是能將高度抽象的數學思想方法變成學生容易感知具體材料,特別是生動有趣的圖畫給學生留下鮮明的印象。問題法是指學生在教師的啟發下,在探究問題答案的過程中,通過回顧、思考、總結,逐步領會數學問題的規律性,進而加深對解題方法、技巧的認識。反復法是指通過同一類情景的多次出現,讓學生持續接受某一數學思想方法的熏陶。剖析法是解剖典型的範例,從方法論的角度用兒童能理解的數學語言去描述數學現象,解釋數學規律。在教學過程中,教師應掌握方法,不失時機的向學生滲透數學思想方法。教師可以通過以下途徑滲透:(1)在知識的形成過程中滲透。如概念的形成過程,結論的推導過程等,都是向學生滲透數學思想和方法,訓練思維,培養能力的極好機會。(2)在問題的解決過程中滲透。如:教學「倒過來推想」 這一課時,在解決問題的過程中,用圖表、摘錄條件等方法讓學生逐步領會「倒過來推想」這種策略的奧妙所在。(3)在復習小結中滲透。在章節小結、復習的數學教學中,我們要注意從縱橫兩個方面,總結復習數學思想與方法,使師生都能體驗到領悟數學思想,運用數學方法,提高訓練效果,減輕師生負擔,走出題海誤區的輕松愉悅之感。如教學完「圓的認識」這一單元之後,可及時幫助學生依靠圓的面積的推導過程回憶多邊形面積公式的推導方法,使學生能清楚地意識到:「轉化」是解決問題的有效方法。(4)在數學講座等教學活動中滲透。數學講座是一種課外教學活動形式,它不僅為廣大學生所喜愛,而且是數學教師普遍選用的數學活動方式。特別是在數學講座等活動中適當滲透數學思想和方法,給數學教學帶來了生機,使過去那死水般的應試題海教學一改容顏,煥發了青春,充滿了活力。
三、千錘百煉——自覺運用數學思想方法。
數學思想方法的教學,不僅是為了指導學生有效地運用數學知識、探尋解題的方向和入口,更是對培養人的思維素質有著特殊不可替代的意義。它在新授中屬於「隱含、滲透」階段,在練習與復習中進入明確、系統的階段,也是數學思想方法的獲得過程和應用過程。這是一個從模糊到清晰的飛躍。而這樣的飛躍,依靠著系統的分析與解題練習來實現。學生做練習,不僅對已經掌握的數學知識以及數學思想方法會起到鞏固和深化的作用,而且還會從中歸納和提煉出新的數學思想方法。數學思想方法的教學過程首先是從模仿開始的。學生按照例題師范的程序與格式解答和例題相同類型的習題,實際上是數學思想方法的機械運用。此時,並不能肯定學生已領會了所用的數學思想方法,只當學生將它用於新的情景,解決其他有關的問題並有創意時,才能肯定學生對這一教學本質、數學規律有了深刻的認識。
我們知道,對於學習者來說,最好的學習效果是主動參與,親自發現,數學思想方法的學習也不例外。在教學中,通過數學思想方法的廣泛應用,讓學生從主觀上重視數學思想方法的學習,進而增強自覺提煉數學思想方法的意識。教師對習題的設計也應該從數學思想方法的角度加以考慮,盡量多安排一些能使各種學習水平的學生深入淺出地作出解答的習題,它既有具體的方法或步驟,又能從一類問題的解法去思考或從思想觀點上去把握,形成解題方法,進而深化為數學思想。如在教學完圓環面積的計算以後,可以由易到難,出幾題運用移動、割補等方法解決的實際問題,這樣做不僅可以讓學生領會到轉化的數學思想方法,對提高學生的學習興趣也大有好處。讓學生在操作中掌握,在掌握後領悟,使數學思想方法在知識能力的形成過程中共同生成。
數學思想方法是一項系統工程,受諸多因素的影響和制約。我們小學數學教師只有重視對數學思想方法的學習研究,探討其教學規律,才能適應課程教學改革需要。當然應該看到,數學思想方法的滲透具有長期性、反復性。對學生進行數學思想方法的滲透必定要經歷一個循環往復、螺旋上升的過程,往往是幾種思想方法交織在一起,在教學過程中教師要依據具體情況,在某一段時間內重點滲透與明確一種數學思想方法,這樣反復訓練,才能使學生真正地有所領悟。
7. 如何培養兒童的數學思想
鏈接: https://pan..com/s/1EgE4cr6BJmbuNhA6sJ2WKQ
8. 如何在小學數學教學中滲透數學思想
小學數學中蘊含著豐富的數學思想方法,因此,在小學數學教學中加強數學思想方法的滲透教學不但重要,而且是現實可行的。
一、轉變思想,重視挖掘數學思想方法
數學知識明顯地寫在教材中,是有「形」的,而數學思想方法卻隱含在數學知識體系裡,是無「形」的,並且不成體系地散見於教材各章節中。因此,作為教師首先要更新觀念,從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時納入教學目標,把數學思想方法教學的要求融入備課環節。
二、把握機會,適時滲透數學思想方法
為了更好地在小學數學教學中滲透數學思想方法,教師不僅要對教材進行研究,潛心挖掘,而且還要講究數學思想方法滲透的手段和方式。小學階段,數學思想方法的滲透一般常用直觀法、問題法、反復法和剖析法。在教學過程中,教師應掌握方法,不失時機地向學生滲透數學思想方法。
三、勤於訓練,自覺提煉數學思想方法
數學思想方法的教學是一個長期的過程,它應通過一定的訓練,鞏固和深化已經掌握的數學知識以及數學思想方法,進而歸納和提煉出新的數學思想方法。在教學中,教師可通過數學思想方法的廣泛滲透,讓學生從主觀上重視數學思想方法的學習,增強自覺提煉數學思想方法的意識。教師對習題的設計也應該從數學思想方法的角度加以考慮,盡量多安排一些能使各種學習水平的學生深入淺出地作出解答的習題。
四、統籌安排,逐步領悟數學思想方法
對學生進行數學思想方法的滲透必定要經歷一個循環往復、螺旋上升的過程,而且常常是幾種數學思想方法交織在一起出現,這就要求教師有一個總體的設計安排,分析什麼時候滲透哪些數學思想方法,如何滲透,滲透到什麼程度,並據此提出不同階段的具體教學要求,確定在某一段時間內重點滲透與明確哪一種數學思想方法。長此以往,逐步使學生領悟數學思想方法的真諦。
9. 怎樣培養小學生的數學思維能力
一、培養語言表達能力
促進學生思維發展實踐證明,看的思維效率最低、寫的思維效率較高、說的思維效率最高,有許多思維的飛躍和問題的突破正是在說的過程中實現的。思維和語言是密切聯系著的,語言是思維的「外殼」,思維是語言的「內核」,思維決定著語言的表達,反過來語言又促進思維的發展,使思維更富有條理,兩者相互依存。人們正是藉助語言思考問題,表達思想的。在數學課堂教學 中,語言是師生、生生間情感交流、數學思維的工具。小學 生數學思維的形成與發展是藉助語言來實現的,發展學生的思維,必須相應地發展學生的語言。
二、合理運用教具,發展學生數學思維
在小學階段主要是抽象邏輯思維,而小學生的思維特點是以具體形象性為主。數學學科特點與兒童思維水平之間有一定的距離,縮短兩者之間距離所採用的手段主要靠直觀教學,根據小學生心理特點及認識規律,教具對發展學生抽象思維能力能夠起到一定的作用。學生可將原有的智力活動方式外化為動手操作的程序,然後又通過這一外部程序「內化」為小學生的智力活動方式。但是只有適度使用教具,才能有效地促進學生抽象思維的發展,否則,始終依賴教具,思維的水平難以提高。
三、巧妙設計問題,引導學生思維
問題是放飛思維和想像的鑰匙,問題的出現能使學生產生一種需要,產生一種對解決問題的渴求,這是一種學習創新的因素,因此教師要精心設計問題,提出一些富有啟發性的問題,激發思維,最大限度地調動學生的積極性和主動性。這樣學生的思維能力才能得到有效的發展。例如教學梯形面積的計算時,可以先讓學生回憶學過的三角形面積計算公式的推導過程,然後展示梯形模型,再提問學生:「你們能用學過的知識推導出梯形的面積計算公式嗎?」這個問題引起了學生們的求知慾。他們聽到問題後,就自己動手操作,有的畫一畫,有的剪一剪,拼一拼,合作交流,最後大部分同學都能自己推導出計算公式,成績差的同學也在其他同學的操作、演說中學 到了知識。小學生的思維打開了,數學學習興趣濃了,自主探索的願望有了,就會自覺地去學習,從而能夠在知識形成的過程中體會到學習的樂。
四、加強思維方法指導,培養學生創造性思維能力
思維的創造性是智力活動的創造水平。教學中要提倡求異思維,鼓勵小學生探究求新,激發他們在頭腦中對已有的知識進行「再加工」,以「調整、改組和充實」,創造性地尋找獨特簡捷的解法,從而提出各種「別出心裁」的方法,這些都能促進學生思維創造性的形成。
小學數學教學中,教師還要注意教給學生邏輯思維的方法,既要指導學生逐步掌握運用觀察、比較、分析、綜合、抽象、概括、判斷、推理等常規思維方法解決數學問題,又要培養學生的直覺思維、發散思維和求異思維等,激發學生尋求新方法的積極情緒,使學生能較好地理解和掌握數學知識,培養學生正確的思維方式並進一步培養學生靈活辨證的思維能力,幫助學生建構穩固且易於遷移的知識結構,發展學生的智力,培養學生的創造性思維能力。從個體發展上看,人的思維從低到高大致可分為直覺動作思維、具體形象思維和抽象邏輯思維3個階段。小學中、高年級學生的抽象邏輯思維開始萌芽。教師可通過多種形式的思維訓練,促進學生抽象邏輯思維的發展,提高學生的創造性思維能力。創造性思維是人類高級的思維活動,是指人們對事物間的聯系進行前所未有的思考並產生創見的思維,它是一種突破常規而又合乎邏輯的全新的思維形式,是創造能力的核心。集中體現在善於獨立的思考、思維不囿於常規、勇於創新,具有主動、求異、發散、獨創等特點。
10. 小學數學思想方法有哪些
1、對應思想方法 對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。聯系的一種思想方法如直線上的點(數軸)與表示具體的數是一一對應。如直線上的點(數軸)與表示具體的數是一一對應。2、假設思想方法 假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。具體,從而豐富解題思路。 3、比較思想方法 比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較,題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。知和未知數量變化前後的情況 4、符號化思想方法、用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。公式、 5、類比思想方法 類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。理解,而且使公式的記憶變得順水推舟的自然和簡潔。 6、轉化思想方法 轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。公式的變形等,在計算中也常用到甲乙甲乙 7、分類思想方法 分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若體現對數學對象的分類及其分類的標准整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。按能否被 2 整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。的分類有助於學生對知識的梳理和建構。 8、集合思想方法 集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。 9、數形結合思想方法數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。助分析數量關系。 10、統計思想方法:統計思想方法:小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。 11、極限思想方法:極限思想方法:事物是從量變到質變的,事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長時,化圓為方」「化在講圓的面積和周長」時「化圓為方化圓的面積和周長化圓為方曲為直」的極限分割思路在觀察有限分割的基礎上想像它們的極限狀態,曲為直的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛的極限分割思盾轉化中萌發了無限逼近的極限思想。盾轉化中萌發了無限逼近的極限思想。 12、代換思想方法:代換思想方法:他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。把椅子,他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了 4 張桌子和 9 把椅子,共用去 504 把椅子的價錢正好相等,桌子和椅子的單價各是多少?元,一張桌子和 3 把椅子的價錢正好相等,桌子和椅子的單價各是多少?13、可逆思想方法:可逆思想方法:它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,千米,千米,逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的 1/7,第二小時比第一小時多行了 16 千米,還有 94 千米,求,第二小時比第一小時多行了甲乙之距。甲乙之距。 14、化歸思維方法: 化歸思維方法:把有可能解決的或未解決的問題,通過轉化過程,化歸」。把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,歸結為一類以便解決可較易解決的問題,以求得解決,以求得解決,這就是「化歸。這就是化歸而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。新知能力的提高無疑是有很大幫助。15、變中抓不變的思想方法:變中抓不變的思想方法:在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共 630 本,其中科技書 20%,後來又買來一些科技書,這時科技書占 30%,又買來科技書多少本?,後來又買來一些科技書,這時科技書占,又買來科技書多少本? 16、數學模型思想方法:數學模型思想方法:所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。 17、整體思想方法:整體思想方法:對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法