⑴ 「奧數」是什麼意思
奧數的意思是奧林匹克數學競賽。
奧林匹克數學競賽或數學奧林匹克競賽,簡稱奧數。1934年和1935年,蘇聯開始在列寧格勒和莫斯科舉辦中學數學競賽,並冠以數學奧林匹克的名稱,1959年在布加勒斯特舉辦第一屆國際數學奧林匹克。
國際數學奧林匹克作為一項國際性賽事,由國際數學教育專家命題,出題范圍超出了所有國家的義務教育水平,難度大大超過大學入學考試。
(1)什麼是奧數學擴展閱讀:
奧數對青少年的腦力鍛煉有著一定的作用,可以通過奧數對思維和邏輯進行鍛煉,對學生起到的並不僅僅是數學方面的作用。
我國的高中數學競賽分三級:每年10月中旬的全國聯賽;次年一月的CMO(冬令營);次年三月開始的國家集訓隊的訓練與選拔。
對我國中學影響較大的還有美國中學生數學競賽。該賽也分三輪進行:美國中學數學競賽,考試形式是30道選擇題,要求90分鍾內完成;美國數學邀請賽,考15道填空題,答案均為不超過999的正整數,要求3個小時內完成;美國數學奧林匹克,這是美國國內水平最高的數學賽活動,每次考5道題,3.5小時內完成。
⑵ 奧數是什麼,為什麼小學生就要學
奧數並不是小學生必須要學的科目。
小學生是否學習奧數,就要看孩子個人的能力如何。有的孩子適合學習,有的孩子不適合。奧數只是為了鍛煉你的思維能力,就像一個東西,你用多了,會越來越靈光。所以學習奧數實際是讓你多動腦,多思考,讓你的思維能夠變得更靈活。一般孩子學習奧數,老師會給他出一套題,根據他做題情況來判斷他是否可以學習奧數。如果一個孩子平時數學考試處於不及格水平,那麼不要學習奧數了。應該花更多的時間在數學的學習上。提升成績在90分以上再學習奧數。學習奧數的孩子,平時的成績也是非常好的。
⑶ 奧數都學習什麼
數學方面的延伸知識,鍛煉孩子大腦,提高計算能力。
⑷ 什麼是奧數
奧數就是有趣味的數學、有較大難度的數學、有好方法解決的數學、用來競賽選拔的數學。
奧數對青少年的腦力鍛煉有著一定的作用,可以通過奧數對思維和邏輯進行鍛煉,對學生起到的並不僅僅是數學方面的作用,通常比普通數學要深奧些。
奧數中有我們平常數學課上所不講、也沒有時間去講的一些數學分支的基礎內容,比如圖論、組合數學、數論等等,還有很重要的數學思想,比如構造思想、特殊化思想、化歸思想等等。
涉獵這類知識,有利於培養學生對數學的興趣,拓展他們的思維,增強思維的條理性,它們是對課堂教學的補充與擴展。
奧數題普遍比較難。既然是為競賽服務,當然應該有難度才行,它們是普通課堂內容的深化和提高,不同的試題有多種不同的視角,需要有較深入的分析才可解答,這類考題可以考查學生對於基礎知識的掌握程度。
(4)什麼是奧數學擴展閱讀
1、奧數在我國曾經被稱為「趣味數學」
因為奧數題中,尤其是在小學奧數題中,許多都帶有很強的趣味性和游戲性。這類奧數題,題面看似簡單,幾乎人人都能看明白;題意生動有趣,但很有迷惑性。
求解的方法很多,絕大多數人只會用笨辦法做,麻煩、費時,而正確快捷的解答方法往往簡單巧妙。
2、奧數依然是數學,是課堂數學的拓展
世界上最權威的分類法大概把數學分成了幾十個大類,一百多個小類。一元一次方程、平面幾何、三角函數、線性方程(組)、解析幾何、立體幾何、集合論、不等式、數列等等。
作為數學教育,當然應該以這些內容為主,因為它們是數學的核心方法和領域,但是這些內容就連初等數學的范疇也沒有完全覆蓋。
⑸ 奧數是什麼學奧數有什麼好處小學生有必要學奧數嗎
那需要給孩子補奧數嗎?一般在上課的經驗中發現,孩子只有具備這幾點,孩子才適合補奧數。一是孩子喜歡學習,但學習成績提高不了。現實中很多孩子由於學習方法不對或者學習能力有限,即使學習很努力,但是最後考試成績不理想。二是孩子數學成績不好,但喜歡探索學習。
學習成績的提高不是一蹴而就的,需要時間的積淀,更需要學習方法和學習思維的改變,而奧數確實是適合提高孩子學習方法和思維的一個重要途徑。各位家長結合孩子的特點,看自己孩子是否適合學習奧數,同時只要孩子學習努力且學習方法得當,學習奧數肯定會對提高學習成績有幫助的。
⑹ 奧數具體學什麼東西
奧數具體學計算問題、應用題、幾何問題、行程問題、數論問題和組合計數問題。
1、經濟計算問題是針對使用經濟計劃作為生產要素基於市場的分配方式的替代品的批評。
2、應用題是用語言或文字敘述有關事實,反映某種數學關系(譬如:數量關系、位置關系等),並求解未知數量的題目。每個應用題都包括已知條件和所求問題。
3、古希臘三大幾何問題既引人入勝,又十分困難。問題的妙處在於它們看非常簡單,而實際上卻有著深刻的內涵。要求作圖只能使用圓規和無刻度的直尺,而且只能有限次地使用直尺和圓規。
4、行程問題是小學奧數中的一大基本問題。行程問題有相遇問題、追及問題等近十種,是問題類型較多的題型之一。行程問題包含多人行程、二次相遇、多次相遇、火車過橋、流水行船、環形跑道、鍾面行程、走走停停、接送問題等。
5、數論是純粹數學的分支之一,主要研究整數的性質。整數可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。
6、組合數學主要是研究某組離散對象滿足一定條件的安排的存在性、構造及計數等問題。組合計數理論是組合數學中一個最基本的研究方向,主要研究滿足一定條件的安排方式的數目及其計數問題。
奧數簡介:
「奧數」是奧林匹克數學競賽的簡稱。1934年—1935年,前蘇聯開始在列寧格勒和莫斯科舉辦中學數學競賽,並冠以數學奧林匹克競賽的名稱,1959年在布加勒斯特舉辦第一屆國際數學奧林匹克競賽。
國際數學奧林匹克作為一項國際性賽事,由國際數學教育專家命題,出題范圍超出了所有國家的義務教育水平,難度大大超過大學入學考試。2012年,IMO已成為一項國際上最有影響力的學科競賽,同時也是公認水平最高的中學生數學競賽。
⑺ 奧數是什麼意思
「奧數」是奧林匹克數學競賽的簡稱。1934年和1935年,前蘇聯開始在列寧格勒和莫斯科舉辦中學數學競賽,並冠以數學奧林匹克的名稱,1959年在布加勒斯特舉辦第一屆國際數學奧林匹克競賽。
國際數學奧林匹克作為一項國際性賽事,由國際數學教育專家命題,出題范圍超出了所有國家的義務教育水平,難度大大超過大學入學考試。有關專家認為,只有5%的智力超常兒童適合學奧林匹克數學,而能一路過關斬將沖到國際數學奧林匹克頂峰的人更是鳳毛麟角。
近年來,我國各種以遠遠高於課堂數學教學內容為主的各種課外數學提高班、培訓班紛紛冠以「奧數」的名號,使得「奧數」培訓逐漸脫離奧賽選手選拔的軌道,凸顯出泛大眾化的特徵。雖然不少知名數學家和數學教育工作者發出了謹防「奧數」走偏的呼聲,但「奧數」成績與中學升學之間的微妙關系使得「奧數」內涵的擴大化趨勢難以阻擋。凡是各學校、團體主辦的各種杯賽針對性極強的課外數學培訓統統披上了「奧數」的外衣,脫離課本、強調技巧成了「奧數」的代名詞。
1、「奧數」究竟學些什麼?
奧數」究竟是什麼?它和我們平時學的數學課有什麼區別和聯系?我想大多數的家長和老師都不一定很清楚,可能就覺得只有那些思路比較新、怪,難度比較大的所謂「難題」、「偏題」才是「奧數」。其實不然。
奧數仍然是屬於數學這一門學科,我想這是毫無疑問的。奧數中當然也有和我們平時所學的課堂上的數學相聯系的部分,是課堂內容的深化和提高;但是奧數中更多的是和課堂上的數學看起來不沾邊的內容,那麼這部分內容究竟是什麼,又來自於哪裡呢?
數學的范圍是極其廣泛的,世界上最權威的分類法大概把數學分成了幾十個大類,一百多個小類。我們從小學高年級的一元一次方程開始算起,一直到高中畢業,在七、八年的時間里,所涉及的數學類別也就是平面幾何、三角函數、線性方程(組)、解析幾何、立體幾何、集合論、不等式、數列等等。作為數學教育,當然應該以這些內容為主,因為它們是數學的核心方法和領域,但是這些內容就是連初等數學的范疇也沒有完全覆蓋。
那好了,什麼是奧數?其實就是我們平常數學課上所不講、也沒有時間去講的一些數學分支的基礎內容,比如圖論、組合數學、數論,以及重要的數學思想,比如構造思想、特殊化思想、化歸思想等等。這些內容的選擇是很科學的,因為這些領域的基本方法和簡單應用是不需要專門的數學工具的,而且帶有很強的趣味性和游戲性。這些方法對於培養學生的數學興趣,拓展它們的思維和知識面自然是很有幫助的。
順便說一句,其實奧數裡面,特別是中低年級奧數中,有很多內容是來自於中國古代數學專著的方法和思想,比如「盈虧問題」,比如「雞兔同籠」,還比如高年級或中學奧數中要介紹的「中國剩餘定理」等等。我認為這些方法看似簡單,但是其中的確凝聚了中國古代數學家的超凡智慧,並且與西方的數學方程思想很不一樣,獨辟蹊徑,自成一派。我想這也是中華優秀文化遺產的一部分,學習它自然是很有裨益的。
我們在「奧數」的教學實踐中,並不是一味的去追求難,追求怪,也一直是本著「打實基礎,靈活運用」的目的在操作,主要拓展學生的思維,加深它們對一些數學中看似不起眼的常識、小結論的認識,比如乘法分配律可以用來解決對角線垂直的任意四邊形面積問題,再比如等比數列求和與循環小數化分數的方法間其實存在著本質的聯系,並且裡面還涉及到了一點「構造」的思想等等,於平凡處見不平凡,化腐朽為神奇,讓學生在「我怎麼沒想到」的感嘆聲中不斷加深對數學的認識,在不知不覺中進步。
2、「奧數」適合什麼樣的學生學習?
在我看來,奧數主要是針對課堂上的數學學得相對比較扎實,學有餘力且又對於數學有著一定興趣的學生。
但同時也要看到,適合學奧數的學生之間也是有差別的,奧數學習也是必須要分層次、分難度,根據不同的學生安排不同的內容和難度,因人因地因時而宜的。我覺得難度的選擇,最好是以學生上課能聽懂,課下花點功夫就能基本掌握為准。另一方面,我也很不贊成本末倒置的做法,如果平時數學課上的內容暫時還都沒有學得比較好的話,那麼還是要以平時課堂的數學內容為主,要不然花時花力花錢還於事無補。
3、「奧數」不等於「提前學」
我看到網上有一篇名叫《小學奧數熱過了頭》的文章,作者是上海數學特級教師周繼光老師。在周老師看來,奧數好像就變成了是「提前學」的代名詞。他在該文章中這樣說道:最近筆者在書城的奧數「書海」中隨意買了一本《沖刺金牌——全國小學數學奧林匹克競賽最新優秀試題精選與題解》,它幾乎囊括了全國各地2000-2002年的小學數學競賽題。我從中找出38道有關幾何圖形的試題,全部做了一遍,發現竟有30道題要用到初二以上的知識,如勾股定理、根式運算、比例線段、等積變換等才能解決。另有七道題也要用到初預、初一的有關知識才能解決。只有一道題可用小學數學知識解決。書中的代數試題也有類似情況。試想一下,把這些題目讓一般的小學生去啃,不是為難他們嗎?如此不恰當的超前訓練不僅對學生的思維發展不利,而且會使絕大部分學生從此懼怕數學而遠離數學,甚至厭惡數學。沉重的心理壓力將會阻礙學生身心健康發展,對此不少老師與家長深為憂慮。
周老師以上這段話,我不敢苟同。首先,同底等高(或等底同高)的三角形面積相等這一點是小學四年級的內容,所謂的「等積變換」其實在小學奧數里也就是這么點內容,最多再深入一步,等高的三角形面積之比等於底之比,至於旋轉變換、反射變換等都是沒有的。比例也是小學的內容,當然上海小學的內容可能比別處少一些,因為它有個初中預科班,其實就相當於一般的小學六年級。全國小學數學競賽是不能因為上海的特殊情況而減少大綱內容的,如果周老師非把這部分內容也認為是初中的話,那這個問題就真的說不清楚了;其次,線段的比例自然也是小學的內容,只要不是涉及到相似三角形或平行線分線段成比例定理即可,就我的教學實踐來看,全國小學數學競賽的幾何題目基本上只要利用三角形面積的簡單變換就能解決,頂多加上一點簡單的一元一次方程或者字母表示數,這也都是小學五年級的內容。 至於勾股定理,一般只涉及到勾三股四弦五,並不要去真的計算什麼平方,即使計算也都是好數字,什麼根式運算是壓根就不會出現的。筆者曾經精選幾道競賽題寫過一篇文章《剖析小學幾何》,其中就介紹了華杯賽中的一些難題,也只要用到小學的知識,只不過靈活多了。
「提前學」好不好?我也認為不好,沒有必要。那麼奧數里究竟有沒有提前學的數學知識?有。不過占的比例很少,大部分奧數的內容我在本文的第一部分交待了,它和正統的數學課堂講的內容是沒有交集的,平時的數學課會講抽屜原理嗎?會講哥底斯堡七橋問題嗎?會講中國古代的「雞兔同籠」,「盈虧問題」嗎?不講。同時,我們在教學實踐中,一直是避免把初中的內容來講;什麼絕對值、實數、代數式(當然最基本的平方差、完全平方六年級下學期還是要教的)、嚴密的幾何論證等等都是不講的。六年級涉及到的一些證明問題,也都是一些染色問題、抽屜原則等等,並沒有提前涉及中學的幾何代數證明。
下面說說方程,就我和學生的接觸來看,大部分學生在小學學習字母表示數,一元一次方程的時候並沒有真正理解什麼是方程的思維方式。通過奧數的學習,他們認識上得到了提高,培養了良好的方程思維,也明白了列方程和解方程是完全可以分開的兩個數學思維活動過程。當然,小學奧數對方程的要求要比小學課本上稍多一些,六年級上學期要求一元一次方程的靈活運用,下學期要求簡單的二元一次方程組的求解,但是我們絕不會涉及到一元二次方程的求解和根式運算。
因此,奧數並不是「提前學」,更不是有些人說的「數學中的雜技」,它就是課堂外的數學,和課堂內的數學是主幹與支乾的關系,既是課堂的提高和深化,又是拓展視野的數學園地。所謂「提前學」帶給學生們的種種負擔與不良影響並不適用於「奧數」,至少是不適用於「奧數」中的絕大部分內容。
⑻ 什麼是小學奧數及如何學
91好課 小學奧數 六年級數學 超越篇30講 超清視頻課程 網路網盤
鏈接: https://pan..com/s/1cFAbQOuV9ZpkZGX45Gzlxw
若資源有問題歡迎追問~
⑼ 奧數具體學什麼
奧數具體學計算問題、應用題、幾何問題、行程問題、數論問題和組合計數問題。
「奧數」是奧林匹克數學競賽的簡稱。1934年—1935年,前蘇聯開始在列寧格勒和莫斯科舉辦中學數學競賽,並冠以數學奧林匹克競賽的名稱,1959年在布加勒斯特舉辦第一屆國際數學奧林匹克競賽。
國際數學奧林匹克作為一項國際性賽事,由國際數學教育專家命題,出題范圍超出了所有國家的義務教育水平,難度大大超過大學入學考試。2012年,IMO已成為一項國際上最有影響力的學科競賽,同時也是公認水平最高的中學生數學競賽。
中國的數學競賽始於1956年。在著名數學家華羅庚、蘇步青等人的倡導下,由中國數學理事會發起,北京、天津、上海、武漢四城市首先舉辦了高中數學競賽。
作用
在這一構造數學模型的過程中,能夠有效地培養學生用數學觀點看待和處理實際問題的能力,提高學生用數學語言和模型解決實際問題的意識和能力,提高學生揭示實際問題中隱含的數學概念及其關系的能力等等。
使學生能夠在這一創造性思維過程中,看到數學的實際作用,感受到數學的魅力,增強學生對數學美的感受力。在強調素質教育的今天,奧林匹克數學的這一教育功能有著更為重要的現實意義。