1. 數學的定義是什麼
定義
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語 : mathematics),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意,以及另外還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義和與學習有關的,亦會被用來指數學的。其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數 τα μαθηματικά(ta mathēmatiká)。以前中國古代把數學叫算術,又稱算學,最後才改為數學。
數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
關於數學的定義,《中國大網路全書。數學卷》吳文俊先生是這樣寫的:「數學是研究現實世界中數量關系和空間形式的,簡單地說,是研究數和形的科學。這個定義來自恩格斯的《自然辯證法》:」數學是數量的科學,它從數量這個概念開始,它給這個概念下了一個殘缺不全的定義,然後再把未包含在定義中的數量的其他基本規定性當作公理從外部引了進來,在這以後,這些規定性就顯現為沒有證明過的東西,自然也就顯現為數學上不能證明的東西。數量的分析會指出這一切公理式的規定是數量的必然的規定。恩格斯再另一篇文章中說:「我們的幾何學是從空間關系出發,我們的算術和代數學是從數量出發。
我們讀大學時用的是蘇聯的教材,關於數學的定義就是吳文俊先生所寫的定義。
對於這個定義,有各種不同的理解。錢學森先生認為數學是社會科學和自然科學的基礎。哲學是社會科學和自然科學的概括。有人對數學來源於現實世界有不同的看法,比如「哥德巴赫猜想」來源於現實世界的哪一部分,很難講清楚。齊民友先生認為「數學的生長像竹子,根在大地,然後自己一節一節向上長,間或爆出新筍,長成新竹。若干年後,竹子開花,結成種子,重回大地。」
西方的數學家有不同的看法,例如林恩。斯蒂恩認為:「傳統上把數學描述為數與形的科學,但是隨著數學家開發的領域擴展到群論、統計學、最優化和控制理論之中,數學的歷史的邊界已經完全消失,同樣數學的應用的邊界也沒有了:它不再只是物理學和工程的語言,現在數學已經成為銀行、製造業、社會科學以及醫葯必可不少的工具,如果從這個廣泛的背景來觀察,我們看到數學不只是討論數與形,而且還討論各種類型的模式和次序。
我認為西方的數學家的看法是對的,恩格斯是總結19世紀數學給出的定義,用這個觀點看19世紀以前的數是可以的,但是數學發展了,現在的數學成果90%是20世紀做出的。
恩格斯說:數學的應用:在剛體力學中是絕對的,在氣體力學中是近似的。在液體力學就比較困難了;在物理學中是試驗性的和相對的;在化學中是最簡單的一次方程式;在生物學中等於零。「現在的情況完全不同,過幾天我會將些數學在物理學、生物學及社會科學中的應用。
西方對數學還把它看成是文化的一部分,對於這一點,很多人不認識,北京大學數學系早在1989年由鄧東皋、孫小禮、張祖貴主編《數學與文化》一書。編者精選了一批國內外著名的數學家以及研究數學的家哲學的文章,從各個側面來說明來說明數學在整個文化中的地位。1994年高考大綱也「要求考生具有一定的數學視野,認識數學的科學價值與人文價值,崇尚數學的理性精神,形成審慎的思維習慣,體會數學的美學意義。」
美國應用數學家、數學史家克萊因談到研究數學的動力有的是為了解決社會需要。但他認為進行數學創造的最主要趨勢力是對美的追求。他認為「如果美的組成和藝術作品的特徵包括洞察力和想像力,對稱性和比例、簡潔,以及精確地適應達到目的的手段,那麼數學就是一門具有其特有完美性的藝術。」就是說,數學是科學也是藝術。
2. 數學是什麼意思
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」
歷史
自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。
從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。
3. 數學的含義是什麼
數學是一門使人嚴密的科學。
4. 數學中代表什麼意思
數學中代表,表示特定的意思,一般情況下不太會用到,但用在數學題中一般都是求這個數。
數學中代表一種定義新運算符號,它可以是加,減,乘,除,乘方,開方等運算符號。事實上,數學所鍛煉的是人的思維,邏輯思維,抽象能力,而數學的一步一步發展,就是從有實際作用變得越來越脫離實際的過程。
古時候中國的九章算術,其中內容都是有價值的,比如說分田,比如說建造城牆所用的土的體積。所以說古代數學僅僅停留在算學上,計算系統是一天比一天強,但是整體卻進步不大。
5. 數學是什麼意思
數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
6. 什麼是數學,數學的概念
數學是研究空間形式和數量關系的科學,是刻畫自然規律和社會規律的科學語言和有效工具。數學科學是自然科學、技術科學等科學的基礎,並在經濟科學、社會科學、人文科學的發展中發揮越來越大的作用。數學的應用越來越廣泛,正在不斷地滲透到社會生活的方方面面,它與計算機技術的結合在許多方面直接為社會創造價值,推動著社會生產力的發展。數學在形成人類理性思維和促進個人智力發展的過程中發揮著獨特的、不可替代的作用。數學是人類文化的重要組成部分,數學素質是公民所必須具備的一種基本素質。
-------選自<普通高中數學新課程標准>
7. 數學中R,Z,N,Q都代表什麼意思
R:實數集合(包括有理數和無理數);Z:整數集合{…,-1,0,1,…};N表示非負整數集;Q表示有理數集。
其他表示:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Q+:正有理數集合
Q-:負有理數集合
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
(7)數學代表什麼意思擴展閱讀:
集合,簡稱集,是數學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創立於19世紀,關於集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義。
即集合是「確定的一堆東西」,集合里的「東西」則稱為元素。現代的集合一般被定義為:由一個或多個確定的元素所構成的整體 。
8. E在數學中代表什麼意思
(1)自然常數。
e在數學中是代表一個數的符號,其實還不限於數學領域。在大自然中,建構,呈現的形狀,利率或者雙曲線面積及微積分教科書、伯努利家族等。現e已經被算到小數點後面兩千位了。
e是自然對數的底數,是一個無限不循環小數,其值是2.71828...,它是這樣定義的:當n→∞時,(1+1/n)^n的極限註:x^y表示x的y次方。
(2)e(科學計數法符號)
在科學計數法中,為了使公式簡便,可以用帶「E」的格式表示。例如1.03乘10的8次方,可簡寫為「1.03E+08」的形式。
(8)數學代表什麼意思擴展閱讀:
科學計數法相關的表達形式:
(1)3×10^4+4×10^4=7×10^4,即aEc±bEc=﹙a±b﹚Ec
(2)3E6×6E5=18E11=1.8E12,即aEM×bEN=abE(M+N)
(3)-6E4÷3E3=-2E1,即aEM÷bEN=a/bE(M-N)
相關的一些推導
(aEc)^2=(aEc)(aEc)=a^2E2c
(aEc)^3=(aEc)(aEc)(aEc)=a^3E3c
9. 數學是什麼意思
數學【shù xué】(希臘語:μαθηματικ?)西方源自於古這一詞在希臘語的μ?θημα(máthēma),其有學習、學問、科學,以及另外還有個較狹隘且技術性的意義-「數學研究」,即使在其語源內。其形容詞意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞hjt數學(math),以前我國古代把數學叫算術,又稱算學,最後才改為數學。
數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。