Ⅰ 淺談如何做數學,學數學
作為一名數學教師,我們可能都會有過這樣的經歷與困惑:某種類型的問題曾經對學生講過,甚至講過不止一次,但到考試再出現類似的問題時,有的學生還是做不出來,正確率並沒有我們想像的那麼高。到講評試卷時,便責怪學生上課時沒有認真聽講,於是把此類問題再講一遍,並提醒學生這一次一定要認真對待。本以為這次學生一定理解並掌握了,此類問題的解決方法,並「發狠」說此類問題以後再也不講了。可是結果事與願違。似乎陷入一個惡性循環的怪圈,面對這種怪圈,表現出來的是無奈和無助……
這迫使我不得不反思自己平時的教學活動:每次都是我講學生聽,有的學生並沒有完全聽明白解決問題的方法,或者聽明白了,但沒有動手做一遍,時間一長就忘了。就象游泳教練在岸上教學員游泳一樣,游泳的動作和姿勢教得再好,不到游泳池裡去游,不喝幾口游泳池裡的水,是學不會游泳的。這個道理人人都懂,但到教師的課堂上真正實施起來卻是那末困難……
隨著學習新課改理念的逐步深入,我越來越意識到數學是做出來的,只有讓學生做數學才能學好數學。數學發展史告訴我們,每一個重要數學概念的形成和發展,其中都蘊涵著豐富的經歷:如無理數的發現,勾股定理的證明,平面直角坐標系的建立等,無不充滿著人類探索的情意,其中既需要人們依賴已有的知識經驗進行觀察、實踐、歸納,猜想等理性思考過程,也需要人們對真理不懈追求的勇氣。也就是說,在形式化的數學這一「冰冷的美麗」裡面,蘊涵著人類「火熱的思考」,在它的形成過程中蘊涵著豐富的生活意義。那末,在數學教學中,應如何引導學生做數學學數學呢?
一、創設良好的問題情境,將學生帶入問題中
問題是數學活動的心臟。將數學定義定理,公式等形成過程轉化為富有生活意義的問題,形成問題情境,從而把學生帶入問題中,在問題的探究中做數學,學數學。因此教學中,應盡可能把知識的發生過程轉化為一系列帶有探究性的問題,真正使有關材料成為學生的思考對象,使數學學習成為學生內在的需求。
二、引導學生進行數學的再創造
荷蘭著名數學家弗賴登塔爾認為,數學教學原則之一是數學的「再創造」。他認為,對學生和數學家應同樣看待,讓他們擁有同樣的權利,那就是通過再創造來學習數學,而不是因襲和仿效。「再創造」理論認為,教師不必把各種概念,法則,性質,公理灌輸給學生,而是應象數學家當時發現這些性質一樣,創造適合的條件,讓學生在實踐活動中自己發現數學知識的來攏去脈。
例如:過去我們講平行四邊形時,先演示一些平行四邊形的圖形,學生也能掌握什麼是平行四邊形,這就象告訴兒童什麼是椅子,桌子一樣的一種抽象化,並沒有什麼神秘。但是現在通常的過程卻是教師給出平行四邊形的一個形式定義,於是又一個層次被跳過,學生又被剝奪了創造定義的機會,甚至還有更糟的,因為這個階段,學生根本不可能理解形式定義,更無法理解形式定義的目的和意義。如果允許一個學生重新創造幾何,他會怎麼做呢?給他一些平行四邊形,他會發現許多共性:如:對邊平行,對角相等,鄰角互補,對角線互相平分及平行四邊形能平面鑲嵌等……接著他會發現,由一個性質還可導出其他性質等。也許不同的學生會選擇不同的基本性質。由此,學生就抓住了形式定義的基本含義,它的相對性等……通過這樣的過程,學生學會了定義這種數學活動,而不是將定義強加於他。
我在講平行四邊形性質這節內容時,先讓學生自製了平行四邊形的模型。課堂上分組交流:先量一量對邊再量一量對角,看有什麼關系?也許是受傳統思想束縛太深,學生量完後,異口同聲回答:「平行四邊形對邊相等,對角相等。」我告訴大家,這種測量其實失去了意義。你量出來的邊角真的絲毫不差相等嗎?這時學生又反思自己測量過程,把真實的測量結果說了出來。一位學生量得:一組對邊分別是10.8cm,10.7cm另一組對邊分別是5.3cm,5.4cm。同學們都知道,這種誤差是由測量工具造成的,是允許的。那麼我們猜一猜,平行四邊形對邊有什麼性質呢?同學們回答:相等。那麼讓我們試著證一證。通過這樣的操作,學生不僅進行了平行四邊形性質的再創造過程,更進一步理解了測量——猜想——證明之間的關系。我風趣地說:「這節課人人都當了一回數學家!」在做中學是弗萊登塔爾的主要教育思想,新課標中加強了這方面的要求。在數學課堂教學中,誰給學生提供在做中學的機會多,條件多,誰就提高了學生再創造數學的能力。「我聽說了,就忘了,我看見了,就領會了,我做過了,就理解了。」這句名言突出了做的重要性。
三、開展主動有效的數學交流
有效的數學學習活動主要表現為自主探索與合作交流,而不是復制與強化,成功有效的數學交流是建立在積極主動的參與之上的,數學交流這種特徵在學生自發的探討中表現得非常明顯。
教育心理學研究表明:學生如果只聽老師講,不去看書,只能,記得所聽內容的15%,如果只看書,而不聽講,只能記得所看內容的25%,如果看了又聽就可記得所學內容的65%。在數學教學中,應努力利用一切機會,讓學生動手實踐,動手做數學,在做中學。讓學生經歷探索研究的過程,發揮他們的創造潛能。
Ⅱ 數學是什麼什麼是數學
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
數學定義的三個主要類型被稱為邏輯學家,直覺主義者和形式主義者,每個都反映了不同的哲學思想學派。都有嚴重的問題,沒有人普遍接受。
西方數學簡史
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。
第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年。
算術(加減乘除)也自然而然地產生了。更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普。歷史上曾有過許多各異的記數系統。
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算。數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備。但尚未出現極限的概念。
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發。
Ⅲ 做數學加數學等於6數6 做是什麼,數是什麼學是什麼
做數學十數學=6數6,推出數只能是9,或0,因為9十9十1=19(1為進位),故學為8,或3十3=6,做十1=6,故做=5或6因此,做是5,或6數是9,0學是8,3。即做數學=598或603。
Ⅳ 什麼是數學,數學的概念
數學是研究空間形式和數量關系的科學,是刻畫自然規律和社會規律的科學語言和有效工具。數學科學是自然科學、技術科學等科學的基礎,並在經濟科學、社會科學、人文科學的發展中發揮越來越大的作用。數學的應用越來越廣泛,正在不斷地滲透到社會生活的方方面面,它與計算機技術的結合在許多方面直接為社會創造價值,推動著社會生產力的發展。數學在形成人類理性思維和促進個人智力發展的過程中發揮著獨特的、不可替代的作用。數學是人類文化的重要組成部分,數學素質是公民所必須具備的一種基本素質。
-------選自<普通高中數學新課程標准>
Ⅳ 做數學題與學數學的關系
學數學只是學習理論知識,但要能熟練運用還是需要實踐的,就好比在學校學習了一個專業,畢業後並不可能一下子就能成為該專業的領袖,而是要通過實習,和平時的歷練,方能成事。所以做數學題,就好比實踐過程,多做才會熟能生巧,才能更好的運用所學的理論。
總而言之,做數學題就是為了更好地領會理論知識。
希望您滿意這個回答,謝謝
Ⅵ 舉例說明什麼是「數學化」,做數學
其實也就是數學語言
數學語言可分為抽象性數學語言和直觀性數學語言,包括數學概念、術語、符號、式子、圖形等。數學語言又可歸結為文字語言、符號語言、圖形語言三類。各種形態的數學語言各有其優越性,如概念定義嚴密,揭示本質屬性;術語引入科學、自然,體系完整規范;符號指意簡明,書寫方便,且集中表達數學內容;式子將關系溶於形式之中,有助運算,便於思考;圖形表現直觀,有助記憶,有助思維,有益於問題解決。 數學語言作為數學理論的基本構成成分,具有「高度抽象性、嚴密的邏輯性、應用的廣泛性」。簡單地講,數學語言科學、簡潔、通用。
Ⅶ 數學是做什麼的
是計算方法,計算生活中的信息量數,簡化生活問題,學習知識、考試、、、、、、、、、、、、、、
Ⅷ 什麼叫做數學
數學是研究數量、結構、變化、空間以及信息等概念的一門學科。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。