導航:首頁 > 數字科學 > 什麼是數學問題

什麼是數學問題

發布時間:2022-04-15 19:04:04

Ⅰ 什麼是數學題

在初中階段,分為兩大類就是代數題和幾何題,還有一種就是一題裡面既考代數又考幾何。

Ⅱ 什麼是數學問題中的求證題

你好,求證題也就是已知一些條件,然後求出它的證明過程,就是也跟證明題的意思是一模一樣的。主要還是對於定理和公理的一些相關的應用。

Ⅲ 經典數學問題是什麼

1 阿基米德分牛問題Archimedes' Problema Bovinum

太陽神有一牛群,由白、黑、花、棕四種顏色的公、母牛組成。
在公牛中,白牛數多於棕牛數,多出之數相當於黑牛數的1/2+1/3;黑牛數多於棕牛,多出之數相當於花牛數的1/4+1/5;花牛數多於棕牛數,多出之數相當於白牛數的1/6+1/7。
在母牛中,白牛數是全體黑牛數的1/3+1/4;黑牛數是全體花牛數1/4+1/5;花牛數
是全體棕牛數的1/5+1/6;棕牛數是全體白牛數的1/6+1/7。
問這牛群是怎樣組成的?

02題 德·梅齊里亞克的法碼問題The Weight Problem of Bachet de Meziriac

一位商人有一個40磅的砝碼,由於跌落在地而碎成4塊.後來,稱得每塊碎片的重量都是整磅數,而且可以用這4塊來稱從1至40磅之間的任意整數磅的重物。
問這4塊砝碼碎片各重多少?

03題 牛頓的草地與母牛問題Newton's Problem of the Fields and Cows

a頭母牛將b塊地上的牧草在c天內吃完了;
a'頭母牛將b'塊地上的牧草在c'天內吃完了;
a"頭母牛將b"塊地上的牧草在c"天內吃完了;
求出從a到c"9個數量之間的關系?

04題 貝韋克的七個7的問題Berwick's Problem of the Seven Sevens

在下面除法例題中,被除數被除數除盡:
* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *
* * * * * *
* * * * * 7 *
* * * * * * *
* 7 * * * *
* 7 * * * *
* * * * * * *
* * * * 7 * *
* * * * * *
* * * * * *
用星號(*)標出的那些數位上的數字偶然被擦掉了,那些不見了的是些什麼數字呢


05題 柯克曼的女學生問題Kirkman's Schoolgirl Problem

某寄宿學校有十五名女生,她們經常每天三人一行地散步,問要怎樣安排才能使每
個女生同其他每個女生同一行中散步,並恰好每周一次?

06題 伯努利-歐拉關於裝錯信封的問題The Bernoulli-Euler Problem of the Misaddressed letters

求n個元素的排列,要求在排列中沒有一個元素處於它應當佔有的位置。

07題 歐拉關於多邊形的剖分問題Euler's Problem of Polygon Division

可以有多少種方法用對角線把一個n邊多邊形(平面凸多邊形)剖分成三角形?

08題 魯卡斯的配偶夫婦問題Lucas' Problem of the Married Couples

n對夫婦圍圓桌而坐,其座次是兩個婦人之間坐一個男人,而沒有一個男人和自己的
妻子並坐,問有多少種坐法?

09題 卡亞姆的二項展開式Omar Khayyam's Binomial Expansion

當n是任意正整數時,求以a和b的冪表示的二項式a+b的n次冪。

10題 柯西的平均值定理Cauchy's Mean Theorem

求證n個正數的幾何平均值不大於這些數的算術平均值。

11題 伯努利冪之和的問題Bernoulli's Power Sum Problem

確定指數p為正整數時最初n個自然數的p次冪的和S=1p+2p+3p+…+np。

12題 歐拉數The Euler Number

求函數?x)=(1+1/x)x及?x)=(1+1/x)x+1當x無限增大時的極限值。

13題 牛頓指數級數Newton's Exponential Series

將指數函數ex變換成各項為x的冪的級數。

14題 麥凱特爾對數級數Nicolaus Mercator's Logarithmic Series

不用對數表,計算一個給定數的對數。

15題 牛頓正弦及餘弦級數Newton's Sine and Cosine Series

不用查表計算已知角的正弦及餘弦三角函數。

16題 正割與正切級數的安德烈推導法Andre's Derivation of the Secant and Tangent Series

在n個數1,2,3,…,n的一個排列c1,c2,…,cn中,如果沒有一個元素ci的值介於兩個鄰近的值ci-1和ci+1之間,則稱c1,c2,…,cn為1,2,3,…,n的一個屈折排列。
試利用屈折排列推導正割與正切的級數。

17題 格雷戈里的反正切級數Gregory's Arc Tangent Series

已知三條邊,不用查表求三角形的各角。

18題 德布封的針問題Buffon's Needle Problem

在檯面上畫出一組間距為d的平行線,把長度為l(小於d)的一根針任意投擲在檯面
上,問針觸及兩平行線之一的概率如何?

19題 費馬-歐拉素數定理The Fermat-Euler Prime Number Theorem

每個可表示為4n+1形式的素數,只能用一種兩數平方和的形式來表示。

20題 費馬方程The Fermat Equation

求方程x2-dy2=1的整數解,其中d為非二次正整數。

21題 費馬-高斯不可能性定理The Fermat-Gauss Impossibility Theorem

證明兩個立方數的和不可能為一立方數。

22題 二次互反律The Quadratic Reciprocity Law

(歐拉-勒讓德-高斯定理)奇素數p與q的勒讓德互反符號取決於公式
(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2]

23題 高斯的代數基本定理Gauss' Fundamental Theorem of Algebra

每一個n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n個根。

24題 斯圖謨的根的個數問題Sturm's Problem of the Number of Roots

求實系數代數方程在已知區間上的實根的個數。

就這些了。。。不好找了

Ⅳ 千禧年七大數學難題是什麼

是NP完全問題、霍奇猜想、龐加萊猜想、黎曼假設、楊-米爾斯存在性和質量缺口、納衛爾-斯托可方程、BSD猜想。其中龐加萊猜想已被解決。

數學難題可以是指那些歷經長時間而仍未有解答/完全解答的數學問題。

古今以來,一些特意提出的數學難題有:平面幾何三大難題、希爾伯特的23個問題、世界三大數學猜想、千禧年大獎難題等。

費爾馬大定理起源於三百多年前,挑戰人類3個世紀,多次震驚全世界,耗盡人類眾多最傑出大腦的精力,也讓千千萬萬業余者痴迷。終於在1994年被安德魯·懷爾斯攻克。

古希臘數學家丟番圖寫過一本著名的《算術》(Arithmetica),經歷中世紀的愚昧黑暗到文藝復興的時候,《算術》的殘本重新被發現研究。

1637年,法國業余大數學家費爾馬(Pierre de Fremat)在《算術》的關於勾股數問題的頁邊上,寫下猜想:xn+ yn=zn是不可能的(這里n大於2;x,y,z,n都是非零整數)。

此猜想後來就稱為費爾馬大定理。費爾馬還寫道「我對此有絕妙的證明,但此頁邊太窄寫不下」。一般公認,他當時不可能有正確的證明。猜想提出後,經歐拉等數代天才努力,200年間只解決了n=3,4,5,7四種情形。

1847年,庫默爾創立「代數數論」這一現代重要學科。他還證明了當n﹤100時,除卻n=37、59、67這些不規則質數的情況,費爾馬大定理都成立,是一次大飛躍。

歷史上費爾馬大定理高潮迭起,傳奇不斷。其驚人的魅力,曾在最後時刻挽救自殺青年於不死。他就是德國的沃爾夫斯克勒,他於1908年為費爾馬大定理設懸賞10萬馬克(相當於現時的160萬美元多),期限1908-2007年。

無數人耗盡心力,空留浩嘆。最現代的電腦加數學技巧,驗證了400萬以內的n,但這對最終證明無濟於事。1983年德國的法爾廷斯證明了:對任一固定的n,最多隻有有限多個x,y,z,振動了世界,獲得菲爾茲獎(數學界最高獎)。

Ⅳ 什麼是數學三大難題

世界近代三大數學難題之一四色猜想

四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。」這個結論能不能從數學上加以嚴格證明呢?他和在大學讀書的弟弟格里斯決心試一試。兄弟二人為證明這一問題而使用的稿紙已經堆了一大疊,可是研究工作沒有進展。

1852年10月23日,他的弟弟就這個問題的證明請教他的老師、著名數學家德.摩爾根,摩爾根也沒有能找到解決這個問題的途徑,於是寫信向自己的好友、著名數學家哈密爾頓爵士請教。哈密爾頓接到摩爾根的信後,對四色問題進行論證。但直到1865年哈密爾頓逝世為止,問題也沒有能夠解決。

1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色 猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰 。1878~1880年兩年間,著名的律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理,大家都認為四色猜想從此也就解決了。

11年後,即1890年,數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。後來,越來越多的數學家雖然對此絞盡腦汁,但一無所獲。於是,人們開始認識到,這個貌似容易的題目, 實是一個可與費馬猜想相媲美的難題:先輩數學大師們的努力,為後世的數學家揭示四色猜想之謎鋪平了道路。

進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。1913年,伯克霍夫在肯普的基礎上引進了一些新技巧,美國數學家富蘭克林於1939年證明了22國以下的地圖都可以用四色著色。1950年,有人從22國推進到35國。1960年,有人又證明了39國以下的地圖可以只用四種顏色著色;隨後又推進到了50國。看來這種推進仍然十分緩慢。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。四色猜想的計算機證明,轟動了世界。它不僅解決了一個歷時100多年的難題,而且有可能成為數學史上一系列新思維的起點。不過也有不少數學家並不滿足於計算機取得的成就,他們還在尋找一種簡捷明快的書面證明方法。
--------
世界近代三大數學難題之一 費馬最後定理

被公認執世界報紙牛耳地位地位的紐約時報於1993年6月24日在其一版頭題刊登了一則有
關數學難題得以解決的消息,那則消息的標題是「在陳年數學困局中,終於有人呼叫『
我找到了』」。時報一版的開始文章中還附了一張留著長發、穿著中古世紀歐洲學袍的
男人照片。這個古意盎然的男人,就是法國的數學家費馬(Pierre de Fermat)(費馬
小傳請參考附錄)。費馬是十七世紀最卓越的數學家之一,他在數學許多領域中都有極
大的貢獻,因為他的本行是專業的律師,為了表彰他的數學造詣,世人冠以「業余王子
」之美稱,在三百六十多年前的某一天,費馬正在閱讀一本古希臘數學家戴奧芬多斯的
數學書時,突然心血來潮在書頁的空白處,寫下一個看起來很簡單的定理這個定理的內
容是有關一個方程式 x2 + y2 =z2的正整數解的問題,當n=2時就是我們所熟知的畢氏定
理(中國古代又稱勾股弦定理):x2 + y2 =z2,此處z表一直角形之斜邊而x、y為其之
兩股,也就是一個直角三角形之斜邊的平方等於它的兩股的平方和,這個方程式當然有
整數解(其實有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…
等等。

費馬聲稱當n>2時,就找不到滿足xn +yn = zn的整數解,例如:方程式x3 +y3=z3就無法
找到整數解。

當時費馬並沒有說明原因,他只是留下這個敘述並且也說他已經發現這個定理的證明妙
法,只是書頁的空白處不夠無法寫下。始作俑者的費馬也因此留下了千古的難題,三百
多年來無數的數學家嘗試要去解決這個難題卻都徒勞無功。這個號稱世紀難題的費馬最
後定理也就成了數學界的心頭大患,極欲解之而後快。

十九世紀時法國的法蘭西斯數學院曾經在一八一五年和一八六0年兩度懸賞金質獎章和
三百法郎給任何解決此一難題的人,可惜都沒有人能夠領到獎賞。德國的數學家佛爾夫
斯克爾(P?Wolfskehl)在1908年提供十萬馬克,給能夠證明費馬最後定理是正確的人,
有效期間為100年。其間由於經濟大蕭條的原因,此筆獎額已貶值至七千五百馬克,雖然
如此仍然吸引不少的「數學痴」。

二十世紀電腦發展以後,許多數學家用電腦計算可以證明這個定理當n為很大時是成立的
,1983年電腦專家斯洛文斯基藉助電腦運行5782秒證明當n為286243-1時費馬定理是正確
的(注286243-1為一天文數字,大約為25960位數)。

雖然如此,數學家還沒有找到一個普遍性的證明。不過這個三百多年的數學懸案終於解
決了,這個數學難題是由英國的數學家威利斯(Andrew Wiles)所解決。其實威利斯是
利用二十世紀過去三十年來抽象數學發展的結果加以證明。

五0年代日本數學家谷山豐首先提出一個有關橢圓曲現的猜想,後來由另一位數學家志
村五郎加以發揚光大,當時沒有人認為這個猜想與費馬定理有任何關聯。在八0年代德
國數學家佛列將谷山豐的猜想與費馬定理扯在一起,而威利斯所做的正是根據這個關聯
論證出一種形式的谷山豐猜想是正確的,進而推出費馬最後定理也是正確的。這個結論
由威利斯在1993年的6月21日於美國劍橋大學牛頓數學研究所的研討會正式發表,這個報
告馬上震驚整個數學界,就是數學門牆外的社會大眾也寄以無限的關注。不過威利斯的
證明馬上被檢驗出有少許的瑕疵,於是威利斯與他的學生又花了十四個月的時間再加以
修正。1994年9月19日他們終於交出完整無瑕的解答,數學界的夢魘終於結束。1997年6
月,威利斯在德國哥庭根大學領取了佛爾夫斯克爾獎。當年的十萬法克約為兩百萬美金
,不過威利斯領到時,只值五萬美金左右,但威利斯已經名列青史,永垂不朽了。
要證明費馬最後定理是正確的
(即xn + yn = zn 對n33 均無正整數解)
只需證 x4+ y4 = z4 和xp+ yp = zp (P為奇質數),都沒有整數解。
----------------
世界近代三大數學難題之一 哥德巴赫猜想

哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被和它本身整除的數)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫寫信將這個問題告訴給義大利大數學家歐拉,並請他幫助作出證明。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。他們對一個個偶數開始進行驗算,一直算到3.3億,都表明猜想是正確的。但是對於更大的數目,猜想也應是對的,然而不能作出證明。歐拉一直到死也沒有對此作出證明。從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」。到了20世紀20年代,才有人開始向它靠近。1920年、挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了「哥德巴赫」。 1924年,數學家拉德馬哈爾證明了(7+7);1932年,數學家愛斯爾曼證明了(6+6);1938年,數學家布赫斯塔勃證明了(5十5),1940年,他又證明了(4+4);1956年,數學家維諾格拉多夫證明了(3+3);1958年,我國數學家王元證明了(2十3)。隨後,我國年輕的數學家陳景潤也投入到對哥德巴赫猜想的研究之中,經過10年的刻苦鑽研,終於在前人研究的基礎上取得重大的突破,率先證明了(l十2)。至此,哥德巴赫猜想只剩下最後一步(1+1)了。陳景潤的論文於1973年發表在中國科學院的《科學通報》第17期上,這一成果受到國際數學界的重視,從而使中國的數論研究躍居世界領先地位,陳景潤的有關理論被稱為「陳氏定理」。1996年3月下旬,當陳景潤即將摘下數學王冠上的這顆明珠,「在距離哥德巴赫猜想(1+1)的光輝頂峰只有颶尺之遙時,他卻體力不支倒下去了……」在他身後,將會有更多的人去攀登這座高峰。

Ⅵ 數學中我知道什麼和提出什麼數學問題的區別

你好,「我知道什麼」可以理解為自己獲得了什麼知識、技能;而「提出數學問題」意味著能自主地去思考,並提出一個數學問題,這也並非一件易事。

Ⅶ 什麼樣的數學問題是好的數學問題

數學是一門工具性學科,問題不存在好壞之分。他本身的問題就是角決問題。只不過現在的數學作為一門學科,來選拔出有一定數學思維的人。就這而言,好的數學問題是能夠較好的符合考綱精神的題。
其實,老師說的所謂的好題只不過是在套用那些專家的話而矣,實質就是假大空。
你要是數學考滿分,哪怕是不做題,老師也會說你是個能發現好的數學問題的人

Ⅷ 數學問題這是什麼意思


Ⅸ 什麼是數學中的解答題

就是用數學推理的思路來解答數學問題。
這里所指的數學推理就是指如用『∵』(因為)『∴』(所以)這樣的推理過程來解答數學問題。
解答題是中學階段的基本題型,它的綜合性很強,涉及知識范圍廣,可以是代數也可以是幾何類型的題目,解這種題時要聯系學過的概念,公式,仔細分析,可以從條件入手,也可以從問題入手,這種題一般都有一個或兩個突破點,只要找到了突破點馬上題目就迎刃而解了。

Ⅹ 數學問題

「近二十年證明沒有本質進展」

「近20年來,哥德巴赫猜想的證明沒有本質進展。」北京師范大學數學系教授、將在本屆國際數學家大會上作45分鍾報告的陳木法說,「它的證明就差最後一步。如果研究取得本質進展,那猜想也就最終獲得了解決。」

據陳木法介紹,在2000年,國際上曾有機構列出了數學領域的7個千年難題,懸賞百萬美元求解,但並未將哥德巴赫猜想包括在內。

「在最近幾年甚至十幾年內,哥德巴赫猜想還難以獲得證明。」中科院數學與系統科學研究院研究員鞏馥洲這樣分析,現在猜想已成為一個孤立的問題,同其他數學學科的聯系不太密切。同時,研究者也缺少有效的思想、方法來最終解決這一著名猜想。「陳景潤先生生前已將現有的方法用到了極至。」

劍橋大學教授、菲爾茨獎得主貝克爾也表示,陳景潤在這項工作上取得的進展是迄今為止最好的求證結果,目前還沒有更大的突破。

「在解決這類數學難題時,可能一二百年內都難有進展,也可能短期內就有重大進展。」在鞏馥洲看來,數學研究中存在一定的偶然性,也許可以讓人們提前在猜想證明上獲得進展。

猜想求證呼喚全新思路

為求解「核心數學中具有挑戰性的問題」,中科院數學與系統科學研究院成立了專門的國際研究團隊。研究院負責人、研究員李福安介紹說:「我們期望在黎曼猜想等領域取得突破。這一研究團隊並沒有將哥德巴赫猜想作為努力的方向。」

陳景潤,這位距「皇冠上的明珠」最近的數學家在1996年離我們而去。他的成就曾一度喚起人們「沖擊」哥德巴赫猜想的「激情」。2000年3月,英國和美國兩家出版公司曾懸賞百萬美元,徵求哥德巴赫猜想的最終解決方案,再次使之成為社會關注的熱點。兩年過去了,直到最後的截止日期,也沒有人前來領取這筆獎金。

據估計,全世界約有二三十人有能力從事猜想的求證。對於這一著名猜想的最終解決,潘承洞曾撰文指出:現在看不出沿著人們所設想的途徑有可能去解決這一猜想。我們必須對有關方法作出重大改進,或提出新的方法,才可能對猜想取得進一步的研究成果。王元的判斷與此基本相似:「對哥德巴赫猜想的進一步研究,必須有一個全新的思路。」作為我國當代著名的數學家,王元和潘承洞都在猜想證明過程中做出過重大貢獻。

「數學研究不只是做難題,我不贊成片面炒作這些難題。在我看來,研究這些數學難題的人不到世界數學家的1%。」陳木法覺得,「數學研究不必非得去解答別人提出的問題,我們要多做些原創性的研究,注重整體研究力量的提高。」

「民間數學家」 距離「明珠」有多遠?

國際數學家大會開幕前夕,一些「民間數學家」紛紛來到北京,聲稱自己「已完全證明」了哥德巴赫猜想,引起社會的關注。

實際上,近年來我國不斷有人拿著猜想的「最終證明結果」輪流拜訪多位數學家,也不時傳出「農民成功證明哥德巴赫猜想」、「拖拉機手摘得『皇冠上的明珠』」等「爆炸性新聞」。

「隨著大會的臨近,數學研究院收到的關於猜想研究成果的稿件也越來越多。」中科院研究員李福安說,「20多年有成千上萬的業余愛好者,我就收到了200多封信。他們的選題主要集中在哥德巴赫猜想上。由於猜想表述非常簡潔,大多數的人都能懂,所以很多人都想來破解這個難題。」

「民間人士熱愛科學的熱情應該保護,但我們不提倡民間人士去攻世界數學難題。他們可以用這種熱情去做更合適的事情。」李福安說,「從來稿中可以看出,不少作者既缺乏基本的數學素養,又不去閱讀別人的數學論文,結果都是錯的。」

「國外也有這種現象。比如在柏林國際數學家大會期間,就有人在會場張貼論文,宣稱自己證明了(1+1)。」首屆國家最高科學技術獎獲得者、本屆國際數學家大會主席吳文俊說:「一些業余愛好者會一點兒數學,有一點兒算術基礎,就去求證(1+1),並把所謂的證明論文寄給我。其實像哥德巴赫猜想這樣的難題,應該讓『專門家』去搞,不應該成為一場『群眾運動』。」

為此,許多數學家對數學愛好者提出忠告:「如果真想在哥德巴赫猜想證明上做出成績,最好先系統掌握相應的數學知識,以免走不必要的彎路。」

新聞背景:摘取「皇冠上的明珠」 還差最後一步

新華網北京8月20日電(記者 李斌 張景勇鄒聲文) 徐遲那篇著名的報告文學,使數億普通百姓知道了「自然科學的皇後是數學;數學的皇冠是數論;哥德巴赫猜想,則是皇冠上的明珠」,也知道了陳景潤是全世界離那顆明珠最近的人——只差最後一步。但20多年過去了,這一步還是沒有人能夠跨過去。

哥德巴赫猜想已讓人類猜了整整260個年頭。1742年,德國數學家哥德巴赫寫信給大數學家歐拉,提出每個不小於6的偶數都是二個素數之和(簡稱「1+1」)。例如,6=3+3,24=11+13,等等。歐拉回信表示,相信猜想是正確的,但他無法加以證明。

從那時起的近170年,許多數學家費盡心血,想攻克它,但都沒有取得突破。直到1920年,挪威數學家布朗終於向它靠近了一步,用數論中古老的篩法證明了:每個大偶數是九個素因子之積加九個素因子之積,即(9+9)。

此後,對猜想的「包圍圈」不斷縮小。1924年,德國數學家拉德馬哈爾證明了(7+7)。1932年,英國數學家愛斯斯爾曼證明了(6+6)。1938年,蘇聯數學家布赫斯塔勃證明了(5+5),2年後又證明了(4+4)。1956年,蘇聯數學家維諾格拉多夫證明了(3+3)。1958年,我國數學家王元又證明了(2+3)。1962年中國數學家潘承洞證明了(1+5),王元證明了(1+4);1965年,布赫斯塔勃等又證明了(1+3)。「包圍圈」越來越小,越來越接近終極目標(1+1)。

1966年,中國數學家陳景潤成為世界上距這顆明珠最近的人——他證明了(1+2)。他的成果處於世界領先地位,被國際數學界稱為「陳氏定理」。由於在哥德巴赫猜想研究方面的卓越成就,1982年,陳景潤與王元、潘承洞共同榮獲國家自然科學獎一等獎。

從陳景潤證明(1+2)以來,哥德巴赫猜想的最後一步——證明(1+1)沒有本質進展。有關專家認為,原有的方法已被用到極至,必須提出全新的方法,採用全新的思路,才可能對猜想取得進一步的研究成果。(完)

附:
【哥德巴赫猜想簡介】
當年徐遲的一篇報告文學,中國人知道了陳景潤和哥德巴赫猜想。
那麼,什麼是哥德巴赫猜想呢?
哥德巴赫猜想大致可以分為兩個猜想:
■1.每個不小於6的偶數都是兩個奇素數之和;
■2.每個不小於9的奇數都是三個奇素數之和。
■哥德巴赫相關
哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。
【哥德巴赫猜想小史】
1742 年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被1和它本身整除的數)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫寫信給當時的大數學家歐拉,歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。從哥德巴赫提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但嚴格的數學證明尚待數學家的努力。
從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的"明珠"。人們對哥德巴赫猜想難題的熱情,歷經兩百多年而不衰。世界上許許多多的數學工作者,殫精竭慮,費盡心機,然而至今仍不得其解。
到了20世紀20年代,才有人開始向它靠近。1920年挪威數學家布朗用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了哥德巴赫猜想。
目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理:「任何充分大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」通常都簡稱這個結果為大偶數可表示為 「1 + 2」的形式。
■哥德巴赫猜想證明進度相關
在陳景潤之前,關於偶數可表示為 s個質數的乘積 與t個質數的乘積之和(簡稱「s + t」問題)之進展情況如下:
1920年,挪威的布朗證明了「9 + 9」。
1924年,德國的拉特馬赫證明了「7 + 7」。
1932年,英國的埃斯特曼證明了「6 + 6」。
1937年,義大利的蕾西先後證明了「5 + 7」, 「4 + 9」, 「3 + 15」和「2 + 366」。
1938年,蘇聯的布赫夕太勃證明了「5 + 5」。
1940年,蘇聯的布赫夕太勃證明了「4 + 4」。
1948年,匈牙利的瑞尼證明了「1+ c」,其中c是一很大的自然數。
1956年,中國的王元證明了「3 + 4」。
1957年,中國的王元先後證明了 「3 + 3」和「2 + 3」。
1962年,中國的潘承洞和蘇聯的巴爾巴恩證明了「1 + 5」, 中國的王元證明了「1 + 4」。
1965年,蘇聯的布赫 夕太勃和小維諾格拉多夫,及義大利的朋比利證明了「1 + 3 」。
1966年,中國的陳景潤證明了 「1 + 2 」。
從1920年布朗證明"9+9"到1966年陳景潤攻下「1+2」,歷經46年。自"陳氏定理"誕生至今的40多年裡,人們對哥德巴赫猜想猜想的進一步研究,均勞而無功。
■布朗篩法相關
布朗篩法的思路是這樣的:即任一偶數(自然數)可以寫為2n,這里n是一個自然數,2n可以表示為n個不同形式的一對自然數之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在篩去不適合哥德巴赫猜想結論的所有那些自然數對之後(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能夠證明至少還有一對自然數未被篩去,例如記其中的一對為p1和p2,那麼p1和p2都是素數,即得n=p1+p2,這樣哥德巴赫猜想就被證明了。前一部分的敘述是很自然的想法。關鍵就是要證明'至少還有一對自然數未被篩去'。目前世界上誰都未能對這一部分加以證明。要能證明,這個猜想也就解決了。
然而,因大偶數n(不小於6)等於其對應的奇數數列(首為3,尾為n-3)首尾挨次搭配相加的奇數之和。故根據該奇數之和以相關類型質數+質數(1+1)或質數+合數(1+2)(含合數+質數2+1或合數+合數2+2)(註:1+2 或 2+1 同屬質數+合數類型)在參與無限次的"類別組合"時,所有可發生的種種有關聯系即1+1或1+2完全一致的出現,1+1與1+2的交叉出現(不完全一致的出現),同2+1或2+2的"完全一致",2+1與2+2的"不完全一致"等情況的排列組合所形成的各有關聯系,就可導出的"類別組合"為1+1,1+1 與1+2和2+2,1+1與1+2,1+2與2+2,1+1與2+2,1+2等六種方式。因為其中的1+2與2+2,1+2 兩種"類別組合"方式不含1+1。所以1+1沒有覆蓋所有可形成的"類別組合"方式,即其存在是有交替的,至此,若可將1+2與2+2,以及1+2兩種方式的存在排除,則1+1得證,反之,則1+1不成立得證。然而事實卻是:1+2 與2+2,以及1+2(或至少有一種)是陳氏定理中(任何一個充分大的偶數都可以表示為兩個素數的和,或一個素數與兩個素數乘積的和),所揭示的某些規律(如1+2的存在而同時有1+1缺失的情況)存在的基礎根據。所以1+2與2+2,以及1+2(或至少有一種)"類別組合"方式是確定的,客觀的,也即是不可排除的。所以1+1成立是不可能的。這就徹底論證了布朗篩法不能證"1+1"。

由於素數本身的分布呈現無序性的變化,素數對的變化同偶數值的增長二者之間不存在簡單正比例關系,偶數值增大時素數對值忽高忽低。能通過數學關系式把素數對的變化同偶數的變化聯系起來嗎?不能!偶數值與其素數對值之間的關系沒有數量規律可循。二百多年來,人們的努力證明了這一點,最後選擇放棄,另找途徑。於是出現了用別的方法來證明哥德巴赫猜想的人們,他們的努力,只使數學的某些領域得到進步,而對哥德巴赫猜想證明沒有一點作用。
哥德巴赫猜想本質是一個偶數與其素數對關系,表達一個偶數與其素數對關系的數學表達式,是不存在的。它可以從實踐上證實,但邏輯上無法解決個別偶數與全部偶數的矛盾。個別如何等於一般呢?個別和一般在質上同一,量上對立。矛盾永遠存在。哥德巴赫猜想是永遠無法從理論上,邏輯上證明的數學結論。

【哥德巴赫猜想意義】
「用當代語言來敘述,哥德巴赫猜想有兩個內容,第一部分叫做奇數的猜想,第二部分叫做偶數的猜想。奇數的猜想指出,任何一個大於等於7的奇數都是三個素數的和。偶數的猜想是說,大於等於4的偶數一定是兩個素數的和。」(引自《哥德巴赫猜想與潘承洞》)
關於哥德巴赫猜想的難度我就不想再說什麼了,我要說一下為什麼現代數學界對哥德巴赫猜想的興趣不大,以及為什麼中國有很多所謂的民間數學家對哥德巴赫猜想研究興趣很大。
事實上,在1900年,偉大的數學家希爾伯特在世界數學家大會上作了一篇報告,提出了23個挑戰性的問題。哥德巴赫猜想是第八個問題的一個子問題,這個問題還包含了黎曼猜想和孿生素數猜想。現代數學界中普遍認為最有價值的是廣義黎曼猜想,若黎曼猜想成立,很多問題就都有了答案,而哥德巴赫猜想和孿生素數猜想相對來說比較孤立,若單純的解決了這兩個問題,對其他問題的解決意義不是很大。所以數學家傾向於在解決其它的更有價值的問題的同時,發現一些新的理論或新的工具,「順便」解決哥德巴赫猜想。
例如:一個很有意義的問題是:素數的公式。若這個問題解決,關於素數的問題應該說就不是什麼問題了。
為什麼民間數學家們如此醉心於哥猜,而不關心黎曼猜想之類的更有意義的問題呢?
一個重要的原因就是,黎曼猜想對於沒有學過數學的人來說,想讀明白是什麼意思都很困難。而哥德巴赫猜想對於小學生來說都能讀懂。
數學界普遍認為,這兩個問題的難度不相上下。
民間數學家解決哥德巴赫猜想大多是在用初等數學來解決問題,一般認為,初等數學無法解決哥德巴赫猜想。退一步講,即使那天有一個牛人,在初等數學框架下解決了哥德巴赫猜想,有什麼意義呢?這樣解決,恐怕和做了一道數學課的習題的意義差不多了。
當年柏努力兄弟向數學界提出挑戰,提出了最速降線的問題。牛頓用非凡的微積分技巧解出了最速降線方程,約翰·柏努力用光學的辦法巧妙的也解出最速降線方程,雅克布·柏努力用比較麻煩的辦法解決了這個問題。雖然雅克布的方法最復雜,但是在他的方法上發展出了解決這類問題的普遍辦法——變分法。現在來看,雅克布的方法是最有意義和價值的。
同樣,當年希爾伯特曾經宣稱自己解決了費爾馬大定理,但卻不公布自己的方法。別人問他為什麼,他回答說:「這是一隻下金蛋的雞,我為什麼要殺掉它?」的確,在解決費爾馬大定理的歷程中,很多有用的數學工具得到了進一步發展,如橢圓曲線、模形式等。
所以,現代數學界在努力的研究新的工具,新的方法,期待著哥德巴赫猜想這個「下金蛋的雞」能夠催生出更多的理論。

【哥德巴赫猜想證明的錯誤例子】

「哥德巴赫猜想」公式及「哥猜」證明 「哥德巴赫猜想」的證明:設偶數為M,素數刪除因子為√M≈N,那麼,偶數的奇素數刪除因子為:3,5,7,11…N, 1、偶數(1+1)最低素數對的正解公式為:√M/4,即N/4。 2、如果偶數能夠被奇素數刪除因子L整除。偶數的素數對為最低素數對*(L-1)/(L-2),比如說偶數能夠被素數3整除,該偶數的素數對≥(3-1) /(3-2)*N/4=N/2,又如偶數能夠被素數5整除,素數對≥(5-1)/(5-2)*N/4=N/3,如果偶數既能被素數3整除,又能被素數5整除,那麼,該偶數的素數對≥2N/3。對於偶數能夠被其它奇素數刪除因子整除,照貓畫虎。 ∵當偶數為大於6小於14時,都知道有「哥德巴赫猜想」(1+1)的解。又根據上面的「哥猜」正解公式,大於16的偶數(1+1)的素數對都≥1,∴「哥德巴赫猜想」成立
猜想:歌德巴赫猜想一:任意一個>=6的偶數都可以表示為兩個素數相加.
經我猜想得: 任意奇質數末尾數必為1,3,5,7,9 (其中1 ,9 至少為兩位數,如11,19)
這樣就有:1+1,1+3,1+5,1+7,1+9,
3+3,3+1,3+5,3+7,3+9,
5+5,5+1,5+3,5+7,5+9,
7+7,7+1,7+3,7+5,7+9,
9+9,9+1,9+3,9+5,9+7,
(其中都可以為多位數的素數相加)
所得的和末尾必為0,2,4,6,8,(都需>=6的偶數)
這樣所的的和必定為>=6的偶數,
但這不一定可以填充所有的偶數,所以這方法是錯誤的`!條件不充分的!

閱讀全文

與什麼是數學問題相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:748
乙酸乙酯化學式怎麼算 瀏覽:1413
沈陽初中的數學是什麼版本的 瀏覽:1367
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:896
數學c什麼意思是什麼意思是什麼 瀏覽:1424
中考初中地理如何補 瀏覽:1314
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1404
如何回答地理是什麼 瀏覽:1038
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1495
二年級上冊數學框框怎麼填 瀏覽:1715
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1014
武大的分析化學怎麼樣 瀏覽:1257
ige電化學發光偏高怎麼辦 瀏覽:1346
學而思初中英語和語文怎麼樣 瀏覽:1671
下列哪個水飛薊素化學結構 瀏覽:1433
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1073