Ⅰ 高二下學期數學學什麼內容
導數,概率,排列組合,統計。
統計里要記公式
必修5:解三角形,數列,不等式。
選修2-1:常用邏輯用語,圓錐曲線與方程,空間向量與立體幾何。
選修2-2:導數及其應用,推理與證明,數系的擴充與復數的引入。
選修2-3 :計數原理,隨機變數及其分布,統計案例。
(1)高二數學學什麼擴展閱讀:
隨機抽樣
①能從現實生活或其他學科中提出具有一定價值的統計問題。
②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性。
③在參與解決統計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統抽樣方法。
④能通過試驗、查閱資料、設計調查問卷等方法收集數據。
Ⅱ 高二理科數學有什麼學習內容
高二理科數學有不等式,簡易邏輯,圓錐曲線,復數,二項式,排列與組合,空間向量與立體幾何,變數深究等學習內容。
1、不等式
一般地,用純粹的大於號「>」、小於號「<」連接的不等式稱為嚴格不等式,用不小於號(大於或等於號)「≥」、不大於號(小於或等於號)「≤」連接的不等式稱為非嚴格不等式,或稱廣義不等式。總的來說,用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。
2、圓錐曲線
圓錐曲線包括橢圓(圓為橢圓的特例),拋物線,雙曲線。
圓錐曲線(二次曲線)的(不完整)統一定義:到定點(焦點)的距離與到定直線(准線)的距離的商是常數e(離心率)的點的軌跡。當e>1時,為雙曲線的一支,當e=1時,為拋物線,當0<e<1時,為橢圓,當e=0時,為一點。
3、復數
我們把形如z=a+bi(a,b均為實數)的數稱為復數,其中a稱為實部,b稱為虛部,i稱為虛數單位。當虛部等於零時,這個復數可以視為實數;當z的虛部不等於零時,實部等於零時,常稱z為純虛數。
4、二項式
初等代數中,二項式是只有兩項的多項式,即兩個單項式的和。二項式是僅次於單項式的最簡單多項式。
5、空間向量
空間中具有大小和方向的量叫做空間向量。向量的大小叫做向量的長度或模(molus)。規定,長度為0的向量叫做零向量,記為0。模為1的向量稱為單位向量。與向量a長度相等而方向相反的向量,稱為a的相反向量。記為-a方向相等且模相等的向量稱為相等向量。
Ⅲ 高二下數學學什麼內容
高二理科數學有不等式,簡易邏輯,圓錐曲線,復數,二項式,排列與組合,空間向量與立體幾何,變數深究等學習內容。
1、不等式
一般地,用純粹的大於號「>」、小於號「<」連接的不等式稱為嚴格不等式,用不小於號(大於或等於號)「≥」、不大於號(小於或等於號)「≤」連接的不等式稱為非嚴格不等式,或稱廣義不等式。總的來說,用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。
2、圓錐曲線
圓錐曲線包括橢圓(圓為橢圓的特例),拋物線,雙曲線。
圓錐曲線(二次曲線)的(不完整)統一定義:到定點(焦點)的距離與到定直線(准線)的距離的商是常數e(離心率)的點的軌跡。當e>1時,為雙曲線的一支,當e=1時,為拋物線,當0<e<1時,為橢圓,當e=0時,為一點。
3、復數
我們把形如z=a+bi(a,b均為實數)的數稱為復數,其中a稱為實部,b稱為虛部,i稱為虛數單位。當虛部等於零時,這個復數可以視為實數;當z的虛部不等於零時,實部等於零時,常稱z為純虛數。
4、二項式
初等代數中,二項式是只有兩項的多項式,即兩個單項式的和。二項式是僅次於單項式的最簡單多項式。
5、空間向量
空間中具有大小和方向的量叫做空間向量。向量的大小叫做向量的長度或模(molus)。規定,長度為0的向量叫做零向量,記為0。模為1的向量稱為單位向量。與向量a長度相等而方向相反的向量,稱為a的相反向量。記為-a方向相等且模相等的向量稱為相等向量。
Ⅳ 江蘇高二數學學什麼
本人目前新高三,高二上的話會學圓錐曲線和數列,高二下就會學一些排列組合,統計概率,二項式定理。坐標南京,可能會因為地區不同,教的東西也會不一樣
Ⅳ 高中數學都學什麼
高一上學期有的地方是學習必修一和必修四,必修一的主要內容是《集合》、《函數》,必修四的主要內容是《三角函數》、《向量》。但是有些地方是學習必修一和必修二,必修二的主要內容是《立體幾何》,簡單的《解析幾何》。如初中所學習的直線方程,園的方程以及他們的一些性質關系等。
在高一上學期,必修一是一定要學的,函數這一章一定要學好,它包括函數的概念,圖像,性質以及一些基本函數,如二次函數,指數函數,對數函數,冪函數等。
必修三中的內容要簡單一些,包括《統計初步》、《演算法》、《概率》。除 了演算法外,其他內容我們在初中都已經接觸過。
到了高二要學習必修五,主要內容是《數列》,《不等式》等,對於我們在高一學習的解析幾何,到了高二還要學《圓錐曲線》等。當然,函數與導數,參數方程與極坐標也應該是高二學習的內容。地方不同,還有些選學的內容也不同。
2高一數學怎麼學
首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高4 5 分鍾課堂效益。
其次,要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。 課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。
再次,如果數學課沒有一定的速度,那是一種無效學習。慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養不出數學能力的,這就要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高。
Ⅵ 高二下學期數學學什麼課本
高二下學期數學學立體幾何、二項式定理、概率初步等有關內容。
具體內容包括《集合與函數》、《三角函數》、《不等式》、《數列》、《復數》、《排列組合、二項式定理》、《立體幾何》、《平面解析幾何》等部分。
必修課程是整個高中數學課程的基礎,包括5個模塊,共10學分,是所有學生都要學習的內容。
相關信息介紹:
高中數學學習是中學階段承前啟後的關鍵時期,不少學生升入高中後,能否適應高中數學的學習,如何才能學好高中數學,這對於高中生來說是一個急需解決的問題。
數學運算是學好數學的基本功,初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程,初中運算能力不過關,會直接影響高中數學的學習。
Ⅶ 高二數學學哪些內容
我讀高三你完全可以採納我,新課改後是:第一章立體幾何;第二章直線與直線方程,圓與圓的方程,空間直角坐標系(解析幾何);第三章空間向量;第四章圓錐曲線,就這些!
Ⅷ 高二文科數學內容有哪些
高中數學共學習11本書,其中必修5本,選修6本。必修課本為必修1、2、3、4、5,選修課本為選修2-1,2-2,2-3,4-1(幾何證明選講),4-4(坐標系與參數方程),4-5(不等式選講)。
就教學進度來說,各個學校可根據實際情況安排。通常先學習高考考察的主幹知識,再學習零散知識,速度由慢到快,深度有難到易,難度自始至終與高考理科數學難度相當。
高二是高三的過渡期,高二文科學習成績好的話,高三復習的壓力就相對小一點。所以高二文科數學的學習十分重要。
每學期學習重點:
1、高一第一學期
剛開學不講上述11本書的內容,而是對初、高中的知識進行銜接,繼續深入探討二次函數的性質和應用,韋達定理,二次根式,因式分解等。接著進入必修1的學習,然後是選修2-2的導數部分。本學期學習的核心是函數與導數。
2、高一第二學期
學習必修5的數列部分,必修4,核心是數列、三角與平面向量。
3、高二第一學期
先學習選修4-1,再學習必修2的立體幾何部分,然後是必修2和選修2-1的解析幾何部分的直線、圓和橢圓,核心是平面幾何、立體幾何和解析幾何。
4、高二第二學期
繼續必修2和選修2-1的解析幾何部分的雙曲線、拋物線的學習,接著是隸屬與解析幾何的選修4-4,再學必修5的線形規劃部分,再學選修2-3的其餘部分(包括排列組合與二項式定理、概率與統計)。
接著完成選修2-2的其餘部分(包括定積分、數學歸納法、復數),選修2-1其餘部分(包括常見邏輯用語、空間向量),必修5和選修4-5的不等式部分,必修3(演算法)等零散知識的學習,結束高中理科數學課程。本學期的主幹是解析幾何、概率和統計、排列組合二項式定理。
5、高三全年皆是復習備考。
Ⅸ 高二上學期數學學什麼內容
高二上學期的數學學哪些內容:
理科:必修2(解析幾何初步與立體幾何)、選修2-1(圓錐曲線)、選修2-2(分類記數原理)、選修2-3(排列組合)。
文科:必修2(解析幾何初步與立體幾何)、選修1-1(平面幾何)、選修1-2(記數原理)。
可能各地區學校之間有差異,一切還以學生所在學校的教材為准,以上僅供參考!
高二數學學習要注意事項:
及時了解、掌握常用的數學思想和方法學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。
有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
Ⅹ 高二的數學要學那些內容/
高二必修學的是必修2(立體幾何、解析幾何——直線、圓)
選修學的是選修2-1(命題與推理、圓錐曲線——橢圓、雙曲線、拋物線、平面直角坐標系)、選修2-2(導數——導函數及微積分、推理與證明)、選修2-3(排列組合、概率一類的)