Ⅰ 數學中出現的log是什麼意思
對數是求指數的運算,比如log2x的意思就是求x是2的多少次冪.
對數函數的單調性由底數a與1的大小關系分為兩類:a>1,遞增,a<1,遞減
log2x<1=log2
2(2為底數,2的對數)
所以x<2,又真數x>0
所以0<x<2
那我來說一下關於lg的計算吧
lg表示以10為底的對數
例如lgx=y,相當於10的y次方=x
下面列一些關於lg的計算公式
lgA+lgB=lg(A*B)
lgA-lgB=lg(A/B)
另外還有ln,表示自然對數,他以e為底
Ⅱ 高中數學中log知識點是什麼
高中數學中log知識點如下:
1、對數公式是數學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。
2、通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。
3、對數的公式都有loga(1)=0loga(a)=1,負數與零無對數loga(MN)=logaM+logaN,loga(M/N)=logaM-logaN,對logaM中M的n次方有=nlogaMa^(log(a)(b))=blog(a),(MN)=log(a)(M)+log(a)(N),log(a)(M÷N)=log(a)(M)-log(a)(N),log(a)(M^n)=nlog(a)(M),log(a^n)M=1/nlog(a)(M)。
log的換底公式推導步驟
設b=a^m,a=c^n,則b=(c^n)^m=c^(mn)①
對①取以a為底的對數,有:log(a)(b)=m②
對①取以c為底的對數,有:log(c)(b)=mn③
③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)
Ⅲ 數學中的log是什麼意思
log在高中數學里表示對數。
一般地,函數y=logax(a>0,且a≠1)叫做對數函數,也就是說以冪(真數)為自變數,指數為因變數,底數為常量的函數,叫對數函數。
通常我們將以10為底的對數叫常用對數(common logarithm),並把log10N記為lgN。另外,在科學計數中常使用以無理數e=2.71828···為底數的對數,以e為底的對數稱為自然對數(natural logarithm),並且把logeN記為In N。
2、恆等式及證明
a^log(a)(N)=N (a>0 ,a≠1)
對數公式運算的理解與推導by尋韻天下(8張)
推導:log(a) (a^N)=N恆等式證明
在a>0且a≠1,N>0時
設:當log(a)(N)=t,滿足(t∈R)
則有a^t=N;
a^(log(a)(N))=a^t=N。
Ⅳ 解釋一下數學的log(對數)
對數可以理解成指數的逆運算,例如X^Y=a,則有log(x)(a)=y
(x為底a的對數)就可以理解為x的多少次方等於a呢?求得答案就是y次方這樣。
以上是我本人的理解。其實對這些數學概念先不要怕他才能理解好,如果還是不理解建議多做題是最好的辦法。
這里有一些比較專業的說法你也可以參考:
如果a^b=n,那麼log(a)(n)=b。其中,a叫做「底數」,n叫做「真數」,b叫做「以a為底的n的對數」。
log(a)(n)函數叫做對數函數。對數函數中n的定義域是n>0,零和負數沒有對數;a的定義域是a>0且a≠1。
對數性質:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
Ⅳ 數學符號log是什麼意思
一種數學計算的符號。英語名詞:logarithms。如果a^b=n,那麼log(a)(n)=b。其中,a叫做「底數」,n叫做「真數」,b叫做「以a為底的n的對數」。
log(a)(n)函數叫做對數函數。
Ⅵ 數學中log什麼意思
log表示對數。
如果a^n = b(a>0,且a≠1),那麼數n叫做以a為底b的對數,記做n=log(a)b,【a是下標】其中,a叫做「底數」,b叫做「真數」。
一般地,函數y=logax(a>0,且a≠1)叫做對數函數,也就是說以冪(真數)為自變數,指數為因變數,底數為常量的函數,叫對數函數。
其中x是自變數,函數的定義域是(0,+∞),即x>0。它實際上就是指數函數的反函數,可表示為x=ay。因此指數函數里對於a的規定,同樣適用於對數函數。
(6)數學log什麼意思擴展閱讀:
特殊的對數:
(1)ln。自然對數以常數e為底數的對數。記作lnN(N>0)。在物理學,生物學等自然科學中有重要的意義。一般表示方法為lnx。數學中也常見以logx表示自然對數。
(2)LG(以10為底的對數)對數函數lg,是以10為底的對數(常用對數),如lg 10=1。lg即為log10。
Ⅶ log是什麼意思
log在數學中是指對數函數。
「log」是「logarithm」的縮寫,是對數函數的意思。常寫作函數 y=log(a) x,意思是數x叫做以a為底N的對數。對數和冪運算是相對的,常用的對數函數以10為底的對數,記為lg、以無理數e為底,記為ln。
(7)數學log什麼意思擴展閱讀:
對數在數學內外有許多應用。這些事件中的一些與尺度不變性的概念有關。例如,鸚鵡螺的殼的每個室是下一個的大致副本,由常數因子縮放。這引起了對數螺旋。Benford關於領先數字分配的定律也可以通過尺度不變性來解釋。
對數也與自相似性相關。例如,對數演算法出現在演算法分析中,通過將演算法分解為兩個類似的較小問題並修補其解決方案來解決問題。自相似幾何形狀的尺寸,即其部分類似於整體圖像的形狀也基於對數。對數刻度對於量化與其絕對差異相反的值的相對變化是有用的。
此外,由於對數函數log(x)對於大的x而言增長非常緩慢,所以使用對數標度來壓縮大規模科學數據。對數也出現在許多科學公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。
Ⅷ log 是什麼 數學里的 在算的時候怎麼算
log是對數計算符號。
如果a的x次方等於N(a>0,且a不等於1),那麼數x叫做以a為底N的對數(logarithm),記作x=logaN。其中,a叫做對數的底數,N叫做真數。
對數相關運算公式示例如下:
1、alogab=b a^{log(a^b)}=b
2、loga(MN)=logaM+logaNlog{a^(MN)}=log(a^M)+log(a^N)
3、loga(M÷N)=logaM-logaN log{a^(M/N)}=log(a^M)-log(a^N)
4、loga(Mn)=nlogaM log{a^(M^n)}=nlog(a^M)
5、log(an)(M)=1/nlogaMlog{(a^n)^M}=1/nlog(a^M)
(8)數學log什麼意思擴展閱讀:
特別地,我們稱以10為底的對數叫做常用對數(common logarithm),並記為lg。
稱以無理數e(e=2.71828...)為底的對數稱為自然對數(natural logarithm),並記為ln。
對數在數學內外有許多應用。這些事件中的一些與尺度不變性的概念有關。例如,鸚鵡螺的殼的每個室是下一個的大致副本,由常數因子縮放。這引起了對數螺旋。Benford關於領先數字分配的定律也可以通過尺度不變性來解釋。對數也與自相似性相關。
例如,對數演算法出現在演算法分析中,通過將演算法分解為兩個類似的較小問題並修補其解決方案來解決問題。自相似幾何形狀的尺寸,即其部分類似於整體圖像的形狀也基於對數。
Ⅸ 數學中的log的具體意思是什麼,怎麼使用,表示
log表示對數。
如果a^n = b(a>0,且a≠1),那麼數n叫做以a為底b的對數,記做n=log(a)b,【a是下標】
其中,a叫做「底數」,b叫做「真數」。
相應地,函數y=logaX叫做對數函數。對數函數的定義域是(0,+∞)。零和負數沒有對數。
底數a為常數,其取值范圍是(0,1)∪(1,+∞)。
當a=10時,寫作:y=lgx【常用對數】。
當a=e【自然對數的底數】時,寫作y=lnx
例:2^3 =8
那麼 log(2) 8 = 3
Ⅹ 高中數學里 log是什麼意思
log在高中數學里表示對數。
一般地,函數y=logax(a>0,且a≠1)叫做對數函數,也就是說以冪(真數)為自變數,指數為因變數,底數為常量的函數,叫對數函數。
通常我們將以10為底的對數叫常用對數(common logarithm),並把log10N記為lgN。另外,在科學計數中常使用以無理數e=2.71828···為底數的對數,以e為底的對數稱為自然對數(natural logarithm),並且把logeN記為In N。
2、恆等式及證明
a^log(a)(N)=N (a>0 ,a≠1)
對數公式運算的理解與推導by尋韻天下(8張)
推導:log(a) (a^N)=N恆等式證明
在a>0且a≠1,N>0時
設:當log(a)(N)=t,滿足(t∈R)
則有a^t=N;
a^(log(a)(N))=a^t=N。