導航:首頁 > 數字科學 > 高一數學包括哪些內容

高一數學包括哪些內容

發布時間:2022-01-23 10:08:31

⑴ 高一數學具體有哪些內容

高一數學知識總結
必修一
一、集合
一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性如:世界上最高的山
(2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3) 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.「相等」關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 「元素相同則兩集合相等」
即:① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
 有n個元素的集合,含有2n個子集,2n-1個真子集
二、函數
1、函數定義域、值域求法綜合
2.、函數奇偶性與單調性問題的解題策略
3、恆成立問題的求解策略
4、反函數的幾種題型及方法
5、二次函數根的問題——一題多解
&指數函數y=a^x
a^a*a^b=a^a+b(a>0,a、b屬於Q)
(a^a)^b=a^ab(a>0,a、b屬於Q)
(ab)^a=a^a*b^a(a>0,a、b屬於Q)
指數函數對稱規律:
1、函數y=a^x與y=a^-x關於y軸對稱
2、函數y=a^x與y=-a^x關於x軸對稱
3、函數y=a^x與y=-a^-x關於坐標原點對稱
冪函數y=x^a(a屬於R)
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。
即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.
三、平面向量
已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計演算法則叫做向量加法的平行四邊形法則。
對於零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
數乘運算
實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ < 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。
設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱線性運算。
向量的數量積
已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。
a?b的幾何意義:數量積a?b等於a的長度|a|與b在a的方向上的投影|b|cos θ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和。
四、三角函數
1、善於用「1「巧解題
2、三角問題的非三角化解題策略
3、三角函數有界性求最值解題方法
4、三角函數向量綜合題例析
5、三角函數中的數學思想方法
15、正弦函數、餘弦函數和正切函數的圖象與性質:

圖象

定義域

值域

最值 當 時, ;當
時, .
當 時,
;當
時, .
既無最大值也無最小值
周期性

奇偶性 奇函數 偶函數 奇函數
單調性 在
上是增函數;在

上是減函數.
在 上是增函數;在
上是減函數.

上是增函數.
對稱性 對稱中心
對稱軸
對稱中心
對稱軸
對稱中心
無對稱軸
必修四
角 的頂點與原點重合,角的始邊與 軸的非負半軸重合,終邊落在第幾象限,則稱 為第幾象限角.
第一象限角的集合為
第二象限角的集合為
第三象限角的集合為
第四象限角的集合為
終邊在 軸上的角的集合為
終邊在 軸上的角的集合為
終邊在坐標軸上的角的集合為
3、與角 終邊相同的角的集合為
4、已知 是第幾象限角,確定 所在象限的方法:先把各象限均分 等份,再從 軸的正半軸的上方起,依次將各區域標上一、二、三、四,則 原來是第幾象限對應的標號即為 終邊所落在的區域.
5、長度等於半徑長的弧所對的圓心角叫做 弧度.
口訣:奇變偶不變,符號看象限.
(以上k∈Z)其他三角函數知識:
同角三角函數基本關系
⒈同角三角函數的基本關系式商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)

兩角和差公式
⒉兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ

倍角公式
⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)

半形公式
⒋半形的正弦、餘弦和正切公式(降冪擴角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα

萬能公式
⒌萬能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)

和差化積公式
⒎三角函數的和差化積公式
α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2

⑵ 高一數學有哪些內容

高一的數學內容還是比較簡單的,比如說一元一次方程二元一次方程,等等吧。

⑶ 高一數學都有哪些內容

人教版必修一,必修四。
分別有集合,函數。初等基本函數(指數函數,對數函數,三角函數),函數與方程。
平面向量等。

⑷ 高一數學包括哪些

你是初三學生想預習?高一上學期要學集合,指對冪基本初等函數,函數模型,三角函數概念恆等變換,向量;下學期學數列,直線與圓,立體幾何。文理科的學生學習內容相同,但要求的深度考試難度不一樣。
現行教材中人教版是使用最多的,河北,山西,東北等等全部電子課本這有http://www.pep.com.cn/gzsx/jszx_1/czsxtbjxzy/xkbsyjc/dzkb/
就高中數學而言還建議參考湘教版,是張景中院士主編的(新浪資料里能下載或者http://www.51jjcn.cn/ebook/)
真是初三學生預習高中知識的話,那你水品較好,找找孫維剛老師的數學教材——初高中的知識整合,不是流行的螺旋式編排,內容比較深。

⑸ 高一數學知識具體哪些

高一數學知識是高中數學知識的基礎,因此學好高一知識至關重要。
從大的方面來說,高一數學知識主要包括如下幾點:
(1)函數性質:定義域,值域,單調性,奇偶性,周期
(2)特殊函數:指數函數、對數函數、三角函數
(3)向量:
(4)不等式解法
等等,還有許多比較零散的知識。注意總結,多做練習。

⑹ 高一數學基本內容是什麼

(一)集合
1.集合的含義與表示
(1)了解集合的含義,元素與集合的「屬於」關系。
(2)能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題。
2.集合間的基本關系
(1)理解集合之間包含與相等的含義,能識別給定集合的子集。
( 2)在具體情境中,了解全集與空集的含義。
3.集合的基本運算
(1)理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
(3)能使用韋恩(Venn)圖表達兩個簡單集合間的關系及運算。
(二)函數概念與基本初等函數I(指數函數、對數函數、冪函數)
1.函數
(1)了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。
(2)在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函數。
(3)了解簡單的分段函數,並能簡單應用。
(4)理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解函數奇偶性含義。
(5)會運用函數的圖像理解和研究函數的性質。
2.指數函數
(1)了解指數函數模型的實際背景。
(2)理解有理指數冪的含義,了解實數指數冪的意義,掌握冪的運算。
(3)理解指數函數的概念及其單調性,掌握指數函數圖像通過的特殊點。
(4)知道指數函數是一類重要的函數模型。
3.對數函數
(1)理解對數的概念及其運算性質,知道用換底公式將一般對數轉化成自然對數或常用對數;了解對數在簡化運算中的作用。
(2)理解對數函數的概念及其單調性,掌握對數函數圖像通過的特殊點。
(3)知道對數函數是一類重要的函數模型。
(4)了解指數函數 ( ,且 )與對數函數 (a>0,且a 1)互為反函數。
4.冪函數
(1)了解冪函數的概念。
(2)結合函數 的圖像,了解它們的變化情況,
5 .函數與方程
(1)結合二次函數的圖像,了解函數的零點與方程根的聯系,判斷一元二次方程根的存在性與根的個數。
(2)根據具體函數的圖象,能夠用二分法求相應方程的近似解。
6.函數模型及其應用
(1)了解指數函數、對數函數、冪函數的增長特徵,知道 直線上升、指數增長、對數增長等不同 函數類型增長的含義。
(2)了解函數模型(如指數函數、對數函數、冪函數、分段函數等在社會生活中普遍使用的函數模型)的廣泛應用。

⑺ 高中數學包括哪些內容

高中數學主要是代數,三角,幾何三個部分.內容相互獨立但是解題時常互相提供方法,等高三你就知道了. 必修的: 代數部分有: 1 集合與簡易邏輯.其實就是集合,命題,充要條件三點,很淺顯高考也不會單出這類的題 2 函數.先是對於函數的描述,有映射定義域對應法則植域;然後是性質,三個,單調性奇偶性周期性;最後是指數函數還有對數函數,是兩個基本的函數,要研究他們的性質和圖象 3 三角.三角其實就是個工具,比較煩人,公式背下來再多練練用的滾瓜爛熟就行了 4 幾何.也就是平面解析幾何,用坐標法定量的研究平面幾何問題.學幾個定義,然後是直線的方程,圓的方程,圓錐曲線方程. 高考的重點一般在 常用函數 常用雙曲線+直線 數列 三角 二項式定理 立體幾何 排列組合加概率等其他一些知識是比較小的部分 重要的是基礎 高一的話上課的基本解題方法一定要熟練掌握 並且不能忘記 到了高三再練習就很麻煩了 還有不要忽視概念 往往很多題目是考概念的 難度方面要視文理科而定 但是70%題目肯定用基本知識就能做的 20%需要結合各種知識並且動腦 真正有難度的題目只有10% 高中數學學習方法談 進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。 一、 高中數學與初中數學特點的變化 1、數學語言在抽象程度上突變 初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。 2、思維方法向理性層次躍遷 高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。 3、知識內容的整體數量劇增 高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。 4、知識的獨立性大 初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。 二、如何學好高中數學 1、養成良好的學習數學習慣。 建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。 2、及時了解、掌握常用的數學思想和方法 學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。 解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。 3、逐步形成 「以我為主」的學習模式 數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。 4、針對自己的學習情況,採取一些具體的措施 記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中 拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再 犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化 或半自動化的熟練程度。 經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化, 使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。 閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課 外題,加大自學力度,拓展自己的知識面。 及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏 固,消滅前學後忘。 學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解 題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。 經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學 思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。 無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而 不是一味地去追求速度或技巧,這是學好數學的重要問題。si=1

⑻ 高一數學都有哪些內容

集合和函數,函數主要有二次函數、冪函數、指數函數、對數函數以及應用。

⑼ 請問高中數學包括哪些內容

高中數學主要是代數,三角,幾何三個部分.內容相互獨立但是解題時常互相提供方法,等高三你就知道了.
必修的:
代數部分有:
1 集合與簡易邏輯.其實就是集合,命題,充要條件三點,很淺顯高考也不會單出這類的題
2 函數.先是對於函數的描述,有映射定義域對應法則植域;然後是性質,三個,單調性奇偶性周期性;最後是指數函數還有對數函數,是兩個基本的函數,要研究他們的性質和圖象
3 三角.三角其實就是個工具,比較煩人,公式背下來再多練練用的滾瓜爛熟就行了
4 幾何.也就是平面解析幾何,用坐標法定量的研究平面幾何問題.學幾個定義,然後是直線的方程,圓的方程,圓錐曲線方程.

高考的重點一般在 常用函數 常用雙曲線+直線 數列 三角
二項式定理 立體幾何 排列組合加概率等其他一些知識是比較小的部分

重要的是基礎 高一的話上課的基本解題方法一定要熟練掌握 並且不能忘記 到了高三再練習就很麻煩了 還有不要忽視概念 往往很多題目是考概念的

難度方面要視文理科而定 但是70%題目肯定用基本知識就能做的 20%需要結合各種知識並且動腦 真正有難度的題目只有10%

高中數學學習方法談

進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。

一、 高中數學與初中數學特點的變化

1、數學語言在抽象程度上突變

初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。

2、思維方法向理性層次躍遷

高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。

3、知識內容的整體數量劇增

高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。

4、知識的獨立性大

初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。

二、如何學好高中數學

1、養成良好的學習數學習慣。

建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

2、及時了解、掌握常用的數學思想和方法

學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。

3、逐步形成 「以我為主」的學習模式

數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。

4、針對自己的學習情況,採取一些具體的措施

² 記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中

拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。

² 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再

犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。

² 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化

或半自動化的熟練程度。

² 經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,

使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。

² 閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課

外題,加大自學力度,拓展自己的知識面。

² 及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏

固,消滅前學後忘。

² 學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解

題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。

² 經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學

思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。

² 無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而

不是一味地去追求速度或技巧,這是學好數學的重要問題。

⑽ 高一數學主要內容是什麼(人教版)

集合概念
子集全集補集
交集並集
絕對值不等式的解法
一元二次不等式
一元二次方程實根的分布(復習初中)
四種命題
充分條件與必要條件

閱讀全文

與高一數學包括哪些內容相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:721
乙酸乙酯化學式怎麼算 瀏覽:1387
沈陽初中的數學是什麼版本的 瀏覽:1333
華為手機家人共享如何查看地理位置 瀏覽:1025
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:865
數學c什麼意思是什麼意思是什麼 瀏覽:1388
中考初中地理如何補 瀏覽:1276
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:683
數學奧數卡怎麼辦 瀏覽:1366
如何回答地理是什麼 瀏覽:1003
win7如何刪除電腦文件瀏覽歷史 瀏覽:1035
大學物理實驗干什麼用的到 瀏覽:1464
二年級上冊數學框框怎麼填 瀏覽:1680
西安瑞禧生物科技有限公司怎麼樣 瀏覽:902
武大的分析化學怎麼樣 瀏覽:1229
ige電化學發光偏高怎麼辦 瀏覽:1318
學而思初中英語和語文怎麼樣 瀏覽:1625
下列哪個水飛薊素化學結構 瀏覽:1407
化學理學哪些專業好 瀏覽:1470
數學中的棱的意思是什麼 瀏覽:1035