Ⅰ 數學建模是幹嘛就是把一個現實問題抽象成數學問題,然後再解決,這樣理解對嗎
可以這樣理解
數學建模就是通過計算得到的結果來解釋實際問題,並接受實際的檢驗,來建立數學模型的全過程。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
Ⅱ 數學建模大賽到底是干什麼的一定要會編程嗎
我曾參加過數學建模競賽。全國大學生數學建模大賽目的是培養大學生能夠在學習知識的同時,學會運用知識解決實際問題,學會將實際問題轉化成數學問題,用數學知識來解決實際問題。並且,培養小組團結合作精神。必須是三人一組,不過最好可以是不同專業的三個人,這樣知識面廣,好解決問題,分工合作。最好會編程,但是不會的話,也可以求助會的人,比如求助你的老師或者會編程的同學。希望我的回答對你有幫助,也希望你能參加,這個大賽很能鍛煉人。
Ⅲ 數學建模相對於其他課程有什麼特點
需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言,把它表述為數學式子,也就是數學模型,然後用通過計算得到的模型結果來解釋實際問題,並接受實際的檢驗。這個建立數學模型的全過程就稱為數學建模。 數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包含抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。
我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。
數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。
Ⅳ 搞數學建模有什麼用
數學建模,利用數學模型解決生活實際問題,大學一般都有數學建模競賽,高檔次的數模比賽有全國數學建模大賽(9月初)和美國數學建模大賽(2月),選修課的話,講一些軟體、模型、分析方法等,如果是為了准備校賽的話還會涉及建模論文的格式和內容要求等。
Ⅳ 數學建模具體有些什麼內容如何進行
一、定義
數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。
我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。
數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
二、數學建模的幾個過程
模型准備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設:根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立:在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。
模型求解:利用獲取的數據資料,對模型的所有參數做出計算(估計)。
模型分析:對所得的結果進行數學上的分析。
模型檢驗:將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用:應用方式因問題的性質和建模的目的而異。
Ⅵ 數學建模到底是什麼,競賽有必要參加嗎
滿意答案落草6級2010-12-09當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言,把它表述為數學式子,也就是數學模型,然後用通過計算得到的模型結果來解釋實際問題,並接受實際的檢驗。這個建立數學模型的全過程就稱為數學建模。 我個人覺得競賽還是蠻有意義的,特別是賽前的准備可以學到很多東西。 說是浪費時間,其實不然,只要你有一些底子,老師輔助,團隊協作,一般90%的人都能拿到省獎。 國家獎,就要看你的論文水平了,建模的創新性稍次,如果想得到高獎,比如國家一等,則又需要看你的創新。(建議你參加,我當初一個隊,兩人是歇著,我自己那會兒把matlab都忘幹了,三天時間一個人搞的亂騰騰的,結果還在省里有個三等獎···汗顏)
Ⅶ 數學建模是什麼專業,主要是做什麼的
數學建模是數學的分支,不是專業,是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
近半個多世紀以來,隨著計算機技術的迅速發展,數學的應用不僅在工程技術、自然科學等領域發揮著越來越重要的作用,而且以空前的廣度和深度向經濟、管理、金融、生物、醫學、環境、地質、人口、交通等新的領域滲透,所謂數學技術已經成為當代高新技術的重要組成部分。
數學建模的應用:
數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在於概念的抽象性、邏輯的嚴密性、結論的明確性和體系的完整性,而且在於它應用的廣泛性。
自從20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在21世紀這個知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國家經濟和科技的後備走到了前沿。
以上內容參考:網路—數學建模
Ⅷ 數學建模是干什麼的啊
對一些存在事物加以抽象化,運用數學手段(符號,函數,極限等)在一維或多維空間建立模型或基於某個特別的模式提出的解決事物的手段即也是一種模式。自然界中或多或少的事物都能用數學建模的方法去解釋,不過目前仍有局限性,主要應用天體運行,運輸 ,統計,生物奧秘解釋等一些深層次的研究領域。
Ⅸ 數學建模是什麼
數學建模就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
數學建模就是建立數學模型,建立數學模型的過程就是數學建模的過程。數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
(9)數學建模是干什麼的擴展閱讀:
從基本物理定律以及系統的結構數據來推導出模型。
1. 比例分析法--建立變數之間函數關系的最基本最常用的方法。
2. 代數方法--求解離散問題(離散的數據、符號、圖形)的主要方法。
3. 邏輯方法--是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策等學科中得到廣泛應用。
4. 常微分方程--解決兩個變數之間的變化規律,關鍵是建立"瞬時變化率"的表達式。
5. 偏微分方程--解決因變數與兩個以上自變數之間的變化規律。
從大量的觀測數據利用統計方法建立數學模型。
1. 回歸分析法--用於對函數f(x)的一組觀測值(xi, fi)i=1,2…n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
2. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
3. 回歸分析法--用於對函數f(x)的一組觀測值(xi, fi)i=1,2…n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
4. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
Ⅹ 數學建模是干什麼的
我不知道你要模型做什麼,我從我的專業說這個數學建摸,我們設計一樣東西,比如讓你設計一控制器,你把你的想法的實際東西做出來了,然後直接連接到你要控制的對象上,結果那一般是肯定有東西爆了,數學建模,你建立了模型,才有可能進行模擬,分析可否實現,不可實現就查找原因,重新設計等,這模型很多時候是數學模型,你不可能每做一樣東西,比如給電廠設計一東西,你不可能建一個比電廠小的比率實物模型吧,數學模型這時候就可以解決問題了