『壹』 小學數學課程目標的四級是什麼
小學數學課程標准「總體目標」
通過義務教育階段的數學學習,學生能夠:
1、獲得適應社會生活和進一步發展所必須的數學的基本知識、基本技能、基本思想、基本活動經驗.
2、體會數學知識之間、數學與其他學科之間、數學與生活之間的聯系,運用數學的思維方式進行思考,增強發現問題和提出問題的能力、分析問題和解決問題的能力.
3、了解數學的價值,提高學習數學的興趣,增強學好數學的信心,養成良好的學習習慣,具有初步的創新意識和實事求是的科學態度.
『貳』 數學課程標准數學" 四基"和" 四能"有哪些
「四基」是指: 基礎知識、基本技能、基本思想、基本活動經驗
「四能」是指: 發現問題能力、提出問題能力、分析問題能力、解決問題能力
《義務教育數學課程標准(2011年版)》的課程目標從"雙基"到"四基"、從"兩能"到"四能",在原有"雙基"基礎上增加了"基本思想"和"基本活動經驗",在原有"兩能"基礎上增加了"發現和提出問題的能力"。義務教育階段的數學課程具有公共基礎的地位,要著眼於學生整體素質的提高,促進學生全面、持續、和諧發展。
『叄』 小學數學四基指什麼
「四基」:基礎知識、基本技能、基本思想、基本活動經驗.
「四基」與數學素養的培養進行整合:
掌握數學基礎知識,訓練數學基本技能,領悟數學基本思想,積累數學基本活動經驗.
『肆』 小學數學《課標》中關於『四基』的內容是什麼
「雙基」變「四基」
2001年版: 「雙基」:基礎知識、基本技能;
2011年版 「四基」:基礎知識、基本技能、基本思想、基本活動經驗。
並把 「四基」與數學素養的培養進行整合:
掌握數學基礎知識,訓練數學基本技能,領悟數學基本思想, 積累數學基本活動經驗。
『伍』 數學課程標准數學" 四基"和" 四能"有哪些
「四基」是指: 基礎知識、基本技能、基本思想、基本活動經驗 。
「四能」是指: 發現問題能力、提出問題能力、分析問題能力、解決問題能力。
《義務教育數學課程標准(2011年版)》的課程目標從"雙基"到"四基"、從"兩能"到"四能",在原有"雙基"基礎上增加了"基本思想"和"基本活動經驗",在原有"兩能"基礎上增加了"發現和提出問題的能力"。義務教育階段的數學課程具有公共基礎的地位,要著眼於學生整體素質的提高,促進學生全面、持續、和諧發展。
(5)小學數學四基是什麼擴展閱讀
數學學業質量水平是六個數學學科核心素養水平的綜合表現。每一個數學學科核心素養劃分成三個水平,每個水平通過核心素養的具體表現和體現核心素養的四個方面進行質量表述,這四個方面為:情景與問題,知識與技能,思維與表達,交流與反思。
數學學業質量分為三個水平:數學學業質量水平一是高中畢業應當達到的要求,也是高中畢業的數學學業水平考試的命題依據;
數學學業質量水平二是高考的要求,也是數學高考的命題依據;
數學學業質量水平三是基於必修、選擇性必修和選修課程的某些內容對數學學科核心素養的達成提出的要求,可以作為大學自主招生的參考。
『陸』 國家數學課程標准中的「四基」指的是什麼三能指的是什麼
研討內容: 1.? 《國家數學課程標准》已經把「雙基」擴展為「四基」,即基礎知識、基本技能,增加「基本數學活動經驗」與「基本數學思想方法」。重視基礎是為了發展,數學教育改革中堅持「四基」,不僅可以更好地促進學生發展,而且也更加突出數學的學科性質。三能:(一)運算能力(二)空間想像能力(三)邏輯思維能力其中邏輯思維能力應是分析,綜合、比較、抽象、概括、轉化等能力的綜合體,數學能力的培養是在教學過程中完成的。因此,有效利用教學時間,合理、有序、有度培養數學能力,顯得尤為重要。 2.數學「四基」之間的關系 關於數學「雙基」的涵義非常豐富,可以有知識形態、教學形態與個體形態等三種表現形式[12].從教學的角度,邵光華教授與顧泠沅先生指出:「雙基教學重視基礎知識、基本技能的傳授,講究精講多練,主張『練中學』,相信『熟能生巧』,追求基礎知識的記憶和掌握、基本技能的操演和熟練,以使學生獲得扎實的基礎知識、熟練的基本技能和較高的學科能力為其主要的教學目標.」[13]其中的「精講多練」、「練中學」、「熟能生巧」等主要是圍繞「演繹活動」而展開的,其目的是讓學生獲得形式化的結果知識——用數學術語或數學公式所表述的系統知識.基本活動經驗則主要是指在數學基本活動中形成和積累的過程知識.由於在我國的數學教學中過分強調「演繹活動」而削弱甚至忽視了「歸納活動」,因此,基本活動經驗更加強調關於歸納活動的經驗.在數學學習過程中,「雙基」與基本活動經驗是相互依存、相互促進的,也是可以相互轉化的,在二者的不斷融合、多次的實際應用中,通過反思提煉而形成的一種具有奠基作用和普遍指導意義的知識經驗便是數學基本思想.由此,我們可以給出數學「四基」的如下關系結構: 從知識的角度來看,「雙基」是一種理性的、形式化的結果性知識,而基本活動經驗則是一種感性的、情景化的過程性知識,它們各強調了數學知識的一個側面,前者形成的是一種知識系統,而後者形成的是一種經驗系統,二者的有機結合才能形成完整的數學知識結構.就方法而言,「雙基」主要以演繹法為主,演繹法只是一種依據固定的前提(定義、公理、定理等),利用相對固定的推理程序(三段論),得出固定結論的方法,而結論的預測與發現,推理思路的探索與調整以及知識的實際應用等,靠演繹法是推不出來的,從這個意義上講,「兒童不可能通過演繹法學會新的數學知識!」 關於「雙基」的學習需要有一個意義建構的過程,此過程是以原有經驗為基礎的,又是從操作性的經驗開始的,並且所建構的意義最終是以經驗的形態儲存學生的大腦當中的,就如著名教育家陶行知所作的關於人獲得知識過程的嫁接樹枝的比喻:「我們要有自己的經驗做根,以這經驗所發生的知識做枝,然後別人的知識才能接得上去,別人的知識方才成為我們知識的一個有機體部分.」 因此,「雙基」只有通過經驗化才能真正成長為學生的數學素養.相對於「雙基」而言,「基本活動經驗」是比較模糊的、不太嚴謹的,缺乏明晰的結構體系,尤其是那些沒有經過加工的「原始經驗」,含有許多主觀的、片面的非本質因素,就像數學家克里斯戈爾所描述那樣:「數學活動過程中所獲得的知識總是不夠精確的和片面的,其整體結構好像一片原始森林,或者說是交相纏繞的樹枝.」 因此,要使「基本活動經驗」更加確切、合理而有效,就需要經歷一個概念化與形式化的過程,雖然,在問題解決的過程中,某些經驗本身就具有很好的指導作用和實用價值,但畢竟數學知識本質上是追求嚴謹性與確定性的.經過概念化與形式化,「基本活動經驗」就可以轉化或融入到「雙基」之中,不但使「基本活動經驗」得到了升華,也使「雙基」因為充滿了學生的感受而獲得了某種生命的活力. 數學活動經驗是指學習者在參與數學活動的過程中所形成的感性知識、情緒體驗和應用意識.感性知識是指具有學生個人意義的過程性知識,也包括學生大腦中那些未經訓練的、不那麼嚴格的數學知識;情緒體驗是指對數學的好奇心和求知慾、在數學學習活動中獲得的成功體驗、對數學嚴謹性與數學結果確定性的感受以及對數學美的感受與欣賞等;應用意識包括「數學有用」的信念、應用數學知識的信心、從數學的角度提出問題與思考問題的意識以及拓展數學知識應用領域的創新意識,而且應用意識是數學基本活動經驗的核心成分 史寧中教授指出:「『基本思想』主要是指演繹和歸納,這應當是整個數學教學的主線,是最上位的思想.」[7] 關於數學基本思想,在以往的文獻中有諸多論述.胡炯濤先生認為:「最高層次的基本數學思想是數學教材的基礎與起點,整個中學數學的內容均循著基本數學思想的軌跡而展開.……『符號化與變換思想』,『集合與對應思想』以及『公理化與結構思想』,它們構成了最高層次的基本數學思想.」[15]在中學數學教學中影響比較大的是任子朝先生提出的四種基本思想:數形結合的思想,分類討論的思想,函數與方程的思想,化歸的思想[16].然而,在眾多的數學思想中起著奠基性、引領性作用的還應該是歸納思想與演繹思想.如「化歸思想」,在探索化歸的方向、發現問題的結論、尋找解決問題的途徑時,主要運用的是歸納思想;在鏈接「中間問題」、整理和表述化歸結果時,則需運用演繹思想,而且化歸的主要策略——「一般化」與「特殊化」本身就是歸納思想與演繹思想的具體體現.從形成過程來看,演繹思想主要是在「雙基」的形式化訓練中練就的,而歸納思想則主要是在「基本活動經驗」的不斷積累中逐步孕育的.歸納思想與演繹思想是數學思想體系的兩翼,二者的協同發展,才能使數學知識健康、和諧地成長為學生的智慧. 總之,數學基礎知識、基本技能、基本活動經驗與基本思想既是數學學習活動的核心內容與主要目標,也是學生數學素養最為重要的組成部分,它們共同構築了學生的數學知識結構。
『柒』 新的數學課程標准中的「四基」與「四能「是什麼
《數學課程標准》中的「四基」是基礎知識、基本技能、基本思想、基本活動經驗。
「四能」是發現和提出問題的能力、分析和解決問題的能力。
『捌』 小學數學四能是什麼
小學數學四能是:操作技能、心智技能、一般教學技能和特殊教學技能。
『玖』 數學課程標准中的四基指的是什麼
數學課程標准中的「四基」指的是:基礎知識、基本技能、基本思想、基本活動經驗。
同時還要扎實掌握「數與代數」、「圖形與幾何」、「統計與概率」等基礎知識與基本技能,逐步領會轉化、分類、模型、數形結合、統計、極限、集合、函數等數學思想,積累經歷過程、解決問題的數學活動經驗,做到基礎知識扎實,基本技能達標,基本思想領會,基本活動經驗積累。
所以在小學數學教學中,落實學科性任務要抓基礎、重核心、強本質、提素養;落實教育性任務,要著重加強中華民族傳統文化教育、滲透人文素養、培養自信心和意志力、弘揚科學精神、增強責任意識與集體觀念、培養良好習慣;落實創新性任務,著重培養學生好奇求知、求異求新、質疑批判、執著自信和獨特個性。
(9)小學數學四基是什麼擴展閱讀
在數學課程中許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。
此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統。
『拾』 小學數學四大領域包括
四大領域
數與代數:數的認識,數的表示,數的大小,數的運算,數量的估計;
圖形與幾何:空間與平面的基本圖形,圖形的性質和分類;圖形的平移、旋轉、軸對稱;
統計與概率:收集、整理和描述數據,處理數據;
實踐與綜合應用:以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。
小學數學新課標的基本理念
1.義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現:人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展。
2.數學是人們生活、勞動和學習必不可少的工具,能夠幫助人們處理數據、進行計算、推理和證明,數學模型可以有效地描述自然現象和社會現象;數學為其他科學提供了語言、思想和方法,是一切重大技術發展的基礎;數學在提高人的推理能力、抽象能力、想像力和創造力等方面有著獨特的作用;數學是人類的一種文化,它的內容、思想、方法和語言是現代文明的重要組成部分。
3.學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內容要有利於學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動。