A. 數學的含義是什麼
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
許多諸如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。
此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。因此,我們可以學習群、環、域和其他的抽象系統。
把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域。由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。
代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究。這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性。組合數學研究列舉滿足給定結構的數對象的方法。
應用數學及美學
一些數學只和生成它的領域有關,且用來解答此領域的更多問題。但一般被一領域生成的數學在其他許多領域內也十分有用,且可以成為一般的數學概念。即使是「最純的」數學通常亦有實際的用途,此一非比尋常的事實,被1963年諾貝爾物理獎得主維格納稱為「數學在自然科學中不可想像的有效性」。
如同大多數的研究領域,科學知識的爆發導致了數學的專業化。主要的分歧為純數學和應用數學。在應用數學內,又被分成兩大領域,並且變成了它們自身的學科——統計學和計算機科學。
許多數學家談論數學的優美,其內在的美學及美。「簡單」和「一般化」即為美的一種。另外亦包括巧妙的證明,如歐幾里得對存在無限多素數的證明;又或者是加快計算的數值方法,如快速傅里葉變換。
高德菲·哈羅德·哈代在《一個數學家的自白》一書中表明他相信單單是美學上的意義,就已經足夠作為純數學研究的正當理由。
以上內容參考網路-數學
B. 數學是什麼
數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
中文名
數學
外文名
Mathematics(簡稱Maths或Math)
學科分類
一級學科
相關著作
數學九章 幾何原本
代表人物
阿基米德 牛頓 歐拉 高斯等
數學分支
1:數學史
2:數理邏輯與數學基礎a:演繹邏輯學(亦稱符號邏輯學)b:證明論 (亦稱元數學) c:遞歸論 d:模型論 e:公理集合論 f:數學基礎 g:數理邏輯與數學基礎其他學科
3:數論
a:初等數論 b:解析數論 c:代數數論 d:超越數論 e:丟番圖逼近 f:數的幾何 g:概率數論 h:計算數論 i:數論其他學科
4:代數學
a:線性代數 b:群論 c:域論 d:李群 e:李代數 f:Kac-Moody代數 g:環論 (包括交換環與交換代數,結合環與結合代數,非結合環與非結 合代數等) h:模論 i:格論 j:泛代數理論 k:范疇論 l:同調代數 m:代數K理論 n:微分代數 o:代數編碼理論 p:代數學其他學科
5:代數幾何學
6:幾何學
a:幾何學基礎 b:歐氏幾何學 c:非歐幾何學 (包括黎曼幾何學等) d:球面幾何學 e:向量和張量分析 f:仿射幾何學 g:射影幾何學 h:微分幾何學 i:分數維幾何 j:計算幾何學 k:幾何學其他學科
C. 什麼叫數學
數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
(3)數學到底是什麼擴展閱讀:
一、數學空間
空間的研究源自於歐式幾何.三角學則結合了空間及數,且包含有非常著名的勾股定理、三角函數等。現今對空間的研究更推廣到了更高維的幾何、非歐幾何及拓撲學。
數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。
在代數幾何中有著如多項式方程的解集等幾何對象的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。
二、數學標點
數學是一門國際性的學科,對各個方面都要求嚴謹。
我國規定初等及以上的數學已可以算作是科技類文獻。
我國規定文獻類文章句號必須用「.」,數學採用的目的一是為此,二是為了避免和下腳標混淆,三是因為我國曾在國際上投稿數學類研究報告,人家卻不採用,因為外國的句號大多不是「。」.
在證明題中,∵(因為)後面要用「,」,∴(所以)後面要用「.」,在一道大題中若有若干小問,則每小問結束接「;」,最後一問結束用「.」,在①②③④這樣的序號後都應用「;」表連接,最後一個序號後用「.」表結束.
D. 數學到底是一門怎樣的學科
數學是一門工具性的學科,跟語言文字一樣,用於交流表達,只是數字比語文表達更准確,更嚴謹,更有邏輯。
E. 數學是研究什麼的
數學是是研究數量、結構、變化、空間以及信息等概念的一門學科。
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等。數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展。
數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。
具體的,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對於不確定性的研究(混沌、模糊數學)。
(5)數學到底是什麼擴展閱讀:
數學重要分支有:
一、數論
數論是純粹數學的分支之一,主要研究整數的性質。整數可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關系,並且用有理數來逼近實數(丟番圖逼近)。
二、代數
代數是研究數、數量、關系、結構與代數方程(組)的通用解法及其性質的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及了解變數的概念和如何建立多項式並找出它們的根。
三、幾何
幾何,就是研究空間結構及性質的一門學科。它是數學中最基本的研究內容之一,與分析、代數等等具有同樣重要的地位,並且關系極為密切。幾何學發展歷史悠長,內容豐富。它和代數、分析、數論等等關系極其密切。幾何思想是數學中最重要的一類思想。
參考資料來源:網路—數學
F. 到底什麼是數學它的范圍有哪些
數學是研究數量、結構、變化以及空間模型等概念的一門學科.透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生.數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理.研究現實世界中數量關系和空間形式的科學.簡單地說,是研究數和形的科學.由於生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,並由用手指或實物計數發展到用數字計數.基礎數學的知識與運用總是個人與團體生活中不可或缺的一塊.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日.今日,數學被使用在世界上不同的領域上,包括科學、工程、醫學和經濟學等.數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展.數學家亦研究沒有任何實際應用價值的純數學,即使其應用常會在之後被發現.創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純粹數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……).數學還分幾何,計算,還有面積.
G. 什麼是數學數學在現實生活中的作用有什麼
引言:說起數學這個名詞,很多人都會想到數學這門學科。確實從小學到大學甚至學到更高的層次都離不開數學,那麼到底什麼是數學呢?數學在現實生活中究竟有哪些作用呢?
說起生活中的數學普遍一些的,就是加減乘除這些基本的計算了,因為這些數字都是跟錢有關的。但是實際上數學中最廣泛的應用還是在各種學科的基礎理論支撐,比如說財經中就需要運用到數學來進行計算以及報表的分析。而物理學科也是需要數學的。尤其是計算機,其實計算機的基礎就是通過各種數字的排列來表達信息的。同時數學在各種機密計算以及航天事業中的作用也是不容小覷的。
H. 數學到底是什麼數學為什麼是全世界每一個孩子的必修課數學究竟有什麼用
CCTV記錄片——《被數學選中的人》全四集。數學到底是什麼?數學為什麼是全世界每一個孩子的必修課?數學究竟有什麼用?在我們現實世界中有哪些體現?對人類文明進程有什麼意義?那些被數學選中的數學家們,是如何看待數學、看待科學演進的?該紀錄片從數學與人的關系出發,深入探尋數學本質,告訴你答案。