⑴ 關於小學數學「數」的概念
自然數
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……叫做自然數。
整數
自然數都是整數,整數不都是自然數。
小數
小數是特殊形式的分數。但是不能說小數就是分數。
混小數(帶小數)
小數的整數部分不為零的小數叫混小數,也叫帶小數。
純小數
小數的整數部分為零的小數,叫做純小數。
循環小數
小數部分一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。例如:0.333……,1.2470470470……都是循環小數。
純循環小數
循環節從十分位就開始的循環小數,叫做純循環小數。例如: , 。
混循環小數
與純循環小數有唯一的區別:不是從十分位開始循環的循環小數,叫混循環小數。例如, , 。
有限小數
小數的小數部分只有有限個數字的小數(不全為零)叫做有限小數。
無限小數
小數的小數部分有無數個數字(不包含全為零)的小數,叫做無限小數。循環小數都是無限小數,無限小數不一定都是循環小數。例如,圓周率π也是無限小數。
分數
表示把一個「單位1」平均分成若干份,取其中的一份或幾份的數,叫做分數。(分成0份在此不討論)
真分數
分子比分母小的分數叫真分數。
假分數
分子比分母大,或者分子等於分母的分數叫做假分數。(分母、分子為零在此不討論)
帶分數
一個整數(零除外)和一個真分數組合在一起的數,叫做帶分數。帶分數也是假分數的另一種表示形式,相互之間可以互化。
關於 (n表示自然數)是否是分數
數是由數字和數位組成。
0的意義
0既可以表示「沒有」,也可以作為某些數量的界限。如溫度等。0是一個完全有確定意義的數。
0是一個數。
0是一個偶數。
0是任何自然數(0除外)的倍數。
0有佔位的作用。
0不能作除數。
0是中性數。
約數和倍數
當甲數能被乙數整除時,就說甲數是乙數的倍數,乙數是甲數的約數。這兩個概念都是相對而存在。一個自然數,不存在是否倍數與約數。例如:「3是約數」,就是一個錯誤說法。只能是對3、6、9、……等數而言,是其中某個數的約數。
奇數與偶數
凡是能被2整除的數叫偶數,反之,不能被2整除的數叫奇數。
質數(素數)與合數
一個數的約數只有1和它本身的數叫做質數,也叫素數。反之,一個數的約數除了1和它本身以外,還有其他的約數,這個數就叫合數。
1是否質數
由於1的約數只有1個,所以1既不是質數,也不是合數。
公約數
幾個數公有的約數,叫做公約數。
它的個數是有限的,既有最大的,也有最小的。
互質數
兩個數的公約數只有1,而沒有其他公約數的,這兩個數就叫互質數。
質數與互質數
這兩個概念沒有什麼聯系。兩個質數,不能肯定就是互質數。只有兩個不相同的質數,才能肯定是互質數。另外,兩個合數既可能是互質數,也可能不是互質數,但不能說兩個合數一定不是互質數。
質因數
把一個合數分解成幾個質數相乘的形式,這樣的質數叫做質因數。
分解質因數
把一個合數分解成幾個質數相同的形式,就叫做分解質因數。
公倍數
幾個數公有的倍數,叫做公倍數。它的個數是無限的,只有最小的,沒有最大的。
最大公約數
幾個數公有的約數中,最大的一個就叫做這幾個數的最大公約數。
最小公倍數
幾個數公有的無限個倍數中,最小的一個,就叫做這幾個數的最小公倍數。
能被2整除的判斷方法
一個數能否被2整除,只要看這個數的末尾是否有0、2、4、6、8這五個數的其中一個即可。
能被5整除的判斷方法
一個數能否被5整除,只要看這個數的末尾是否有0、5這兩個數的其中一個即可。
能被3整除的判斷方法
一個數能否被3整除,只要看這個數的各個數位上數字的和能否被3整除。
⑵ 小學數學中什麼是數,什麼是量
6米~6是數,米就是量,
30個1米等於30米,這里的30是數,米就是量,
⑶ 什麼是個數
個數是數量,基數是指13579這些無法整除2的數字,二進制就是滿二就進位,一般是十進制,滿十進位
⑷ 數學的 - 數。都有什麼數分別代表什麼
1. 整數(Integer): 正整數、 0 、和負整數合稱整數。 像-2,-1,0,1,2 等等這樣的數稱為整數。 整數是表示物體個數的數,是人類能夠掌握的最基本的數學工具。一個給定的整數n可以是負數(n∈Z-),零(n=0),或正數(n∈Z+).
2.自然數(Natural Number):0和正整數叫做自然數。像0,1,2,3,4,5,6,...這樣的數是自然數。
3.偶數(EvenNumber):能被2整除的整數。偶數=2k ,這里k是整數。
4.奇數(OddNumber):不能被2整除的整數。奇數=2k-1,這里k是整數。
5.分數(FractionalNumber):把單位"1"平均分成若干份,表示這樣的一份或幾份的數叫分數。分數中間的一條橫線叫做分數線,分數線上面的數叫做分子,分數線下面的數叫做分母。可以把它當做除法來看,用分子除以分母(因0在除法不能做除數,所以分母不能為0)。
6.小數(DecimalFraction):小數由整數部分、小數部分和小數點組成。當測量物體時往往會得到的不是整數的數,古人就發明了小數來補充整數 小數是十進制分數的一種特殊表現形式。分母是10、100、1000……的分數可以用小數表示。任何分數都可以化成有限小數或是無限循環小數,但是小數中的無限不循環小數卻不能化成分數。
7.質數(PrimeNumber):又叫素數,大於1的正整數。除了1和它本身之外,再也沒有其它的因數。
8.有理數(RationalNumber):是整數和分數的統稱,一切有理數都可以化成分數的形式。任何一個有理數都可以寫成分數m/n(m,n都是整數,且n≠0)的形式。
9.無理數(IrrationalNumber ):是無限不循環小數。即非有理數之實數,不能寫作兩整數之比。常見的無理數有大部分的平方根、π和e等。
10.實數(RealNumber ):可以分為有理數和無理數兩類,或代數數和超越數兩類,或正實數,負實數和零三類。數學上,實數直觀地定義為和數軸上的點一一對應的數。實數集合通常用字母 R 或 R^n 表示。而R^n 表示 n 維實數空間。實數是不可數的。
11.函數(Function ):是表示每個輸入值對應唯一輸出值的一種對應關系。函數f中對應輸入值的輸出值x的標准符號為f(x)。就定義方面我們可以說:在某變化過程中有兩個變數x,y,按照某個對應法則,對於給定的x,有唯一確定的y與之對應,那麼y就叫做x的函數。其中x叫自變數,y叫因變數。同時我們還可以這么定義:一般地,給定非空數集A,B,按照某個對應法則f,使得A中任一元素x,都有B中唯一確定的y與之對應,那麼從集合A到集合B的這個對應,叫做從集合A到集合B的一個函數。記作:x→y=f(x),x∈A.集合A叫做函數的定義域,記為D,集合{y∣y=f(x),x∈A}叫做值域,記為C。定義域,值域,對應法則稱為函數的三要素。
希望以上對你能有所幫助。
⑸ 數學中數指什麼
對一組數進行排序後,正中間的一個數(數字個數為奇數);或者中間兩個數的平均數(數字個數為偶數)。
中數是按順序排列在一起的一組數據中居於中間位置的數,即在這組數據中,有一半的數據比它大,有一半的數據比它小。這個數可能是數據中的某一個,也可能根本不是原有的數。
中數是集中量數的一種,它能描述一組數據的典型情況。
中數又名中位數
希望對你有幫助