導航:首頁 > 數字科學 > 數學要學什麼

數學要學什麼

發布時間:2022-04-25 21:10:50

Ⅰ 大學數學主要學的是些什麼內容

大學的數學學習內容屬於高等數學,主要的內容有:

1、極限

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。極限是解決高等數學問題的基礎。

2、微積分

微積分是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科,在許多領域都有重要的應用。

3、空間解析幾何

藉助矢量的概念可使幾何更便於應用到某些自然科學與技術領域中去,因此,空間解析幾何介紹空間坐標系後,緊接著介紹矢量的概念及其代數運算。

(1)數學要學什麼擴展閱讀

歷史發展

一般認為,16世紀以前發展起來的各個數學學科總的是屬於初等數學的范疇,因而,17世紀以後建立的數學學科基本上都是高等數學的內容。由此可見,高等數學的范疇無法用簡單的幾句話或列舉其所含分支學科來說明。

19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。

分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。

Ⅱ 數學系要學哪些專業課程

數學專業的專業課程有:

一、數學分析

又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。

數學中的分析分支是專門研究實數與復數及其函數的數學分支。它的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。

二、高等代數

初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。

發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。

三、復變函數論

復變函數論是數學中一個基本的分支學科,它的研究對象是復變數的函數。復變函數論歷史悠久,內容豐富,理論十分完美。它在數學許多分支、力學以及工程技術科學中有著廣泛的應用。 復數起源於求代數方程的根。

復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。

四、抽象代數

抽象代數(Abstract algebra)又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。

他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。

五、近世代數

近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。初等代數學是指19世紀上半葉以前發展的代數方程理論,主要研究某一代數方程(組)是否可解,如何求出代數方程所有的根〔包括近似根〕,以及代數方程的根有何性質等問題。

法國數學家伽羅瓦在1832年運用「群」的思想徹底解決了用根式求解多項式方程的可能性問題。他是第一個提出「群」的思想的數學家,一般稱他為近世代數創始人。他使代數學由作為解代數方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數即近世代數時期。

參考資料來源:

網路—數學分析

網路—高等代數

網路—復變函數論

網路—抽象代數

網路—近世代數

Ⅲ 大學本科數學專業的,都要學哪些科目

按專業以後的發展方向來分:

1、純粹的數學專業主幹課程:初等數論、概率論與數理統計、數學教學論、小學數學教材教法、數學分析選講、復變函數、近世代數、高等代數選講、數學教育學等 、數學與應用數學。

2、應用數學主要課程:分析學、代數學、幾何學、概率論、物理學、數學模型、數學實驗、計算機基礎、數值方法、數學史等,以及根據應用方向選擇的基本課程。

3、信息與計算科學專業主要課程:數學分析、高等代數、幾何、概率統計、數學模型、離散數學、模糊數學、實變函數、復變函數、微分方程、物理學、信息處理、信息編碼與信息安全、現代密碼學教程、計算智能、計算機科學基礎、數值計算方法、數據挖掘、最優化理論、運籌學、計算機組成原理、計算機網路、計算機圖形學、c/c++語言、java語言、匯編語言、演算法與數據結構、資料庫應用技術、軟體系統、操作系統等。

Ⅳ 初三的數學主要是學什麼

初三數學要學習的內容主要包括:直角三角形的邊角關系、反比例函數、二次函數、圓.知識內容看似不多,但是都是中考數學的重點和難點.首先,反比例函數與幾何綜合在中考選擇填空題中,出現壓軸題還是非常正常的;再者,對圓來講,它是平面幾何中知識最多的幾何圖形,

涉及的考點和題型也是最多的,在中考證明題中,難度一定不會小;最後,二次函數,在中考數學中以壓軸題的形式出現,幾乎可以算得上必考的壓軸題了.綜合上述所講,初三的學習內容難度不小,對中考起決定性的作用.
應該怎麼學
加強基礎:無論學什麼或者考什麼,都離不開基礎知識,在學習之初抓住基礎,不可一味求難.
適當拓展:掌握基礎為前提,進行相應的拓展.例如反比例函數與幾何綜合的中考題型可以盡早去接觸,二次函數壓軸題型也要經常去訓練,這樣才不至於時間太緊張而錯失學習的機會.

初中數學學什麼

中學階段的數學大致分為四個分支:代數、幾何、數論、組合。而其中,代數和幾何是學習的重點。在初中階段,基本上只有這兩個部分的內容。因為這兩部分知識體系性強,出題容易掌握難度,並且能夠讓學生養成良好的學習習慣。



數學最忌諱「我覺得」和「我以為」,數學學習也是如此。數學的概念和定義中的每一個字都是有自己的作用的。所以一定要牢記背熟,並且在面對知識點有疑惑的地方,千萬要立刻就去弄明白。因為初中知識成體系,如果之前有一點不明白,之後很容易陷入死循環。這就會導致「欠賬」越來越多,跟不上老師的思路。學習成績一落千丈。

學習是一個「死」去「活」來的過程。它的意思就是對於知識基礎逇公式、定理、方法一定要死記下來,然後靈活的去應用,才能夠最大程度上的學好數學。學數學就好像蓋樓,如果身為磚瓦的基礎知識和定理都沒牢記,那麼這棟大樓一定會輕易坍塌。

Ⅵ 大學數學與應用數學專業都學什麼知識

主要學習如下課程:
數學分析、高等代數、高等數學、解析幾何、微分幾何、高等幾何、常微分方程、偏微分方程、概率論與數理統計、復變函數論、實變函數論、抽象代數、近世代數、數論、泛函分析、拓撲學、模糊數學。師范類還要學習數學教育學等。
數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。
(6)數學要學什麼擴展閱讀
概率和統計:
作為數學的分支,概率學是研究隨機事件的一門科學技術,涉及工程、生物學、化學、遺傳學、博弈論、經濟學等多方面的應用,幾乎遍及所有的科學技術領域,可以說是各種預測的基石。
概率論與數理統計是本世紀迅速發展的學科,研究各種隨機現象的本質與內在規律性以及自然科學、社會科學等各個學科中各種類型數據的科學的綜合處理及統計推斷方法。

Ⅶ 大學數學學什麼(非數學專業)

普通工科都有:高數即高等數學(分上、下。更高級點的就是數學分析了,比高數難一點),概率,復變函數。其中概率、復變不同專業分不同要求。根據專業不同也可能會加入更系統更小的專業劃分,如:數據統計,模型建立等。你提及到的9點裡面,很多都是在高數里有對應知識點的。下面分別作答下:
1:立體幾何在大學數學高數中是沒有專門的幾何的,不過會涉及到很多空間曲線,其中就包括立體幾何的圖形,那個時候重點就是微積分,包括對點、線、面、體的積分。
2:平面幾何就跟我1中說到的一樣了,都是微積分中應用到的圖形,並不像初中高中那樣純粹地看一個圖形。比如初中高中就用一些公式定理證明解答之類的。大學就是要把很多問題細節化。上面提及的高數的立體幾何就是三重積分,而面就是雙重積分。
3:概率與統計是有的,有的專業也是可以不學。概率的知識很多跟高中學的是一樣的,不過它裡面的定理比高中的多很多,更劃分了很多,如果是考試的話會比高數容易很多,很多人數學怕的就是高數,高數在大學中計入的學分很重。
4:向量是有的,也是包含在高數裡面的,而且跟向量關聯的還有梯度等知識。很多專業知識也會涉及到這些。所以高數是學習很多專業知識的基礎。
5:三角函數也是有的,三角函數在高數的微積分有,在專業知識也有用到,在復變函數也會有。
6:數列也有,在高數、概率中都有。
7:圓錐曲線也有,高數的微積分中用的不少,難點的微積分都是三重或多重積分
8:排列組合也有,高數,概率,復變都涉及。
9:大致模塊我在開頭已經說了,高數是重點,然後是概率和復變,根據專業不同還有更多細節的,具體學校和專業具體看的。
要了解更多高數等知識還可以去很多論壇和網站了解。
希望我的回答對你有幫助。

Ⅷ 大學里都需要學哪些數學課程阿

數學分析,空間解析幾何,復變函數,實變函數與泛函分析,高等代數,拓樸學,概率論與數理統計,數學模型,常微分方程,微分幾何,模糊數學等

Ⅸ 高中數學都學什麼

高一上學期有的地方是學習必修一和必修四,必修一的主要內容是《集合》、《函數》,必修四的主要內容是《三角函數》、《向量》。但是有些地方是學習必修一和必修二,必修二的主要內容是《立體幾何》,簡單的《解析幾何》。如初中所學習的直線方程,園的方程以及他們的一些性質關系等。

在高一上學期,必修一是一定要學的,函數這一章一定要學好,它包括函數的概念,圖像,性質以及一些基本函數,如二次函數,指數函數,對數函數,冪函數等。

必修三中的內容要簡單一些,包括《統計初步》、《演算法》、《概率》。除 了演算法外,其他內容我們在初中都已經接觸過。

到了高二要學習必修五,主要內容是《數列》,《不等式》等,對於我們在高一學習的解析幾何,到了高二還要學《圓錐曲線》等。當然,函數與導數,參數方程與極坐標也應該是高二學習的內容。地方不同,還有些選學的內容也不同。

2高一數學怎麼學

首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高4 5 分鍾課堂效益。

其次,要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。 課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。

再次,如果數學課沒有一定的速度,那是一種無效學習。慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養不出數學能力的,這就要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高。

閱讀全文

與數學要學什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:748
乙酸乙酯化學式怎麼算 瀏覽:1413
沈陽初中的數學是什麼版本的 瀏覽:1367
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:896
數學c什麼意思是什麼意思是什麼 瀏覽:1424
中考初中地理如何補 瀏覽:1314
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1404
如何回答地理是什麼 瀏覽:1038
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1495
二年級上冊數學框框怎麼填 瀏覽:1715
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1013
武大的分析化學怎麼樣 瀏覽:1257
ige電化學發光偏高怎麼辦 瀏覽:1346
學而思初中英語和語文怎麼樣 瀏覽:1670
下列哪個水飛薊素化學結構 瀏覽:1433
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1073