『壹』 學習數學的意義是什麼
數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題。掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學。
『貳』 學習數學的意義50字
1、數學是各門學科的語言,是現代物質文明最底層的基石。
2、數學是一種思想方法,學習數學就是一個思維訓練的過程。
3、挖掘大十能力:
歸納總結的能力
演繹推理的能力
提出問題、分析問題、解決問題的能力,抽象的能力
聯想的能力
學習新知識的能力
創新的能力
准確計算的能力
口頭和書面表達的能力
靈活應用數學軟體的能力
4、培養五大素養:
主動探索並善於抓住問題中的背景和本質的素養;
善於對現實世界中的現象和過程進行合理的簡化與量化,建立數學模型的素養;
以數學方式理性思維,從多角度探尋解決問題的道路的素養;
具有良好的科學態度和創新精神,能合理提出數學猜想、數學概念的素養;
熟練運用准確、嚴格、簡練的數學語言表達自己的數學思想的素養。
5、引導和啟迪心理和智能
『叄』 數學的意義與價值是什麼
數學的意義:數學是研究數量,結構,變化,空間以及信息等。數學所描述的數量關系與空間形式,就自然成為物理學,力學,天文學,化學,生物學等自然科學的基礎。
數學的價值:數學為物理學,力學,天文學等科學提供了語言與工具。
數學被應用在很多不同的領域上,包括科學,工程,醫學和經濟學等。數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
在人類歷史發展和社會生活中,數學發揮著不可替代的作用,同時也是學習和研究現代科學技術必不可少的基本工具。
以上內容來源:網路-數學
『肆』 學數學的意義和價值
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,是學習和研究現代科學技術必不可少的基本工具。
數學是研究數量、結構、變化以及空間模型等概念的一門古老而常新的學科,是由計數、計算、量度和對物體形狀及運動的觀察中產生的。數學的發生和發展經過了漫長的歷史階段,它具有精確性、抽象性、嚴格性、廣泛性等特點,其中抽象是數學與生俱來的特徵,導致了它的深邃和睿智。
數學已經一百多個分支,數學的應用已深入到自然科學、技術科學和社會人文科學的各個領域,以及社會生活的各個方面。基礎數學的知識與運用更是個人與團體生活中不可或缺的一部分。
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展。
『伍』 數學的意義。
數學的意義:
1、數學是人類探究世界,研究自然界任何事物的核心;
2、數學衍生出了物理學、化學、生物學,數學不斷推動著人類的發展;
3、數學是公理、約定的支點,有了數學,研究才得以繼續;
4、數學衍生出二維、三維、高維,是這些事物存在的基礎。
一、中學數學有什麼用?
1、初中數學學什麼?
我們以現行初中數學教材(六三制)為例:
七年級(上):有理數;整式的加減;一元一次方程;幾何圖形初步;
七年級(下):相交線與平行線;實數;平面直角坐標系;二元一次方程;不等式和不等式組;數據的收集、整理與描述;
八年級(上):三角形;全等三角形;軸對稱;整式的乘法與因式分解;分式;
八年級(下):二次根式;勾股定理;平行四邊形;一次函數;數據的分析;
九年級(上):一元二次方程;二次函數;旋轉;圓;概率初步;
九年級(下):反比例函數;相似;銳角三角函數;投影和視圖。
這6冊書的內容其實可以按照研究的內容重新整理成為3個模塊。
代數模塊:有理數;整式的加減;一元一次方程;實數;平面直角坐標系;二元一次方程;不等式和不等式組;整式的乘法與因式分解;分式;二次根式;一次函數;一元二次方程;二次函數;反比例函數。
幾何模塊:幾何圖形初步、相交線與平行線;三角形;全等三角形;軸對稱;勾股定理;平行四邊形;旋轉;圓;相似;銳角三角函數;投影和視圖。
統計模塊:數據的收集、整理與描述;數據的分析;概率初步。
數學在難度上的突然提升一般在初二上學期。這個時期,無論幾何證明還是代數式化簡,其解題對模式識別和技巧要求很高,學生需要一定量的訓練,這個過程是枯燥乏味的;同時還需要一定的觀察力,成績拉開是在這個階段,不少學生對數學興趣喪失也是在這個階段。
2、高中數學學什麼?
原新課標高中教材:
必修部分:
必修1:集合;函數(概念、性質、一次函數和二次函數);基本初等函數I(指數函數、對數函數和冪函數)
必修2:立體幾何初步(空間幾何體、位置關系);解析幾何初步(平面直角坐標系、直線方程、圓方程、空間直角坐標系)
必修3:演算法初步;統計;概率
必修4:基本初等函數II(三角函數);平面向量;三角恆等變換
必修5:解三角形;數列;不等式
選修1系列(文科):
選修1-1:常用邏輯用語;圓錐曲線與方程;導數及其應用
選修1-2:統計案例、推理與證明、數系的擴充與復數的引入、框圖
選修2系列(理科):
選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2-2:導數及其應用、推理與證明、數系的擴充與復數
選修2-3:計數原理、概率、統計案例
其他選修課
3-1數學史、3-3球面幾何、3-4對稱與群論、4-1幾何證明選講、4-2矩陣與變換、4-4坐標系和參數方程、4-5不等式選講、4-6初等數論初步、4-7優選法與試驗設計初步、4-9風險與決策。
很多省份高考選考題是從4-1幾何證明選講、4-4坐標系和參數方程、4-5不等式選講這三部分中出題,應該說是比較適應大學高等數學的學習的,但沒選擇矩陣還是令人遺憾。
新版新課標高中教材
必修A版共兩冊:
第一冊:集合與常用邏輯用語;一元二次函數、方程和不等式;函數的概念和性質;指數函數與對數函數;三角函數
第二冊:平面向量及其應用;復數;立體幾何初步;統計;概率
必修B版共四冊:
第一冊:集合與常用邏輯用語;等式與不等式;函數;
第二冊:指數函數、對數函數與冪函數;統計與概率;平面向量初步
第三冊:三角函數;向量的數量積和三角恆等變換;
第四冊:解三角形;復數;立體幾何初步
選擇性必修共三冊:
第一冊:空間向量與立體幾何;直線和圓的方程;圓錐曲線的方程
第二冊:數列;一元函數的導數及其應用
第三冊:計數原理;隨機變數及其分布;成對數據的統計分析
綜上,高中內容也可大致歸納為三個模塊:
函數與代數模塊:集合與常用邏輯用語;函數的概念和性質;初等函數(指數函數、對數函數、冪函數、三角函數包括三角恆等變換);平面向量(平面向量初步、向量的數量積、解三角形);等式與不等式;數列;一元函數的導數及其應用
幾何模塊:1)立體幾何—空間幾何體;空間位置關系;空間向量與立體幾何;2)解析幾何—直角坐標系;直線和圓的方程;圓錐曲線的方程
概率與統計模塊:統計與概率(數據的收集、特徵和表示、樣本估計總體;隨機事件和獨立性、古典概型);計數原理(排列組合、二項式);隨機變數及其分布(隨機變數和條件概率);成對數據的統計分析(相關和回歸)
3、中學課程與大學課程的銜接:
數學根據研究對象的不同,可以並不準確地劃分為簡單的四個部分:
代數的研究對象是代數結構和運演算法則;
幾何的研究對象是圖形性質和空間關系變化;
分析的研究對象是函數也就是變數關系的性質;
數論的研究對象是整數的性質。
之所以說並不準確,是因為數學學科作為一個門類,各個部分之間彼此聯系得非常緊密,各個專門領域之間相互借鑒之處甚多,很難嚴格地將它們互相區分。例如初中數學中的函數圖像,高中數學中的三角函數、解析幾何、向量,都是這方面的典型體現。
一般而言,如果不是專門研究數學的大學生,在本科階段最主要的數學課程是高等數學、線性代數、概率論和數理統計這三門課程,這也是考研數學的主要內容。高等數學就屬於分析范疇,線性代數屬於代數范疇,概率論和數理統計屬於應用數學范疇,但需要分析和代數工具。幾何和數論一般只有數學系和少數專業學習。
中學數學知識是學習大學數學知識的基礎,這就是學習中學數學的意義所在。下面我來大致梳理一下中學數學知識的聯系,以及它們如何構成大學數學的學習基礎。
先說代數和分析:
小學我們做的計算題都是數的運算,結果就是一個數,所以學的都是數的運演算法則。到了小學高年級,我們開始學到用字母表示數,這叫做代數式。
「代數」是晚清數學家李善蘭譯介到中國來的,取其「以字代數」之意。代數式是一種語言體系的轉換,我們可以通過這種方式構造公式,將運算一般化,得到通用的解法;等到面對具體問題時,在將具體的數代入公式中,就可以解決問題了;而代數研究的目的就是尋求通用的解法。公元820年,波斯數學家花剌子模發表了一份代數學領域的專著,闡述了一次和二次方程的通用解法,明確提出了代數中的一些基本概念,把代數發展成為一門與幾何相提並論的獨立學科。書名中首次使用了al jabr一詞,其含義是「重新整合」,也就是移項與合並同類項。 轉譯為拉丁語後,變成了 algebra,後來又進入了英語。這就是「代數」一詞的詞源含義。
引入代數式之後出現了數系的擴充。隨著處理的數字越來越復雜,加減乘除的四則運算不能夠得到自然數的結果,a-b(a<b,a和b都是整數)引出了負數,a/b(a<b,b≠0,a和b都是整數)引出了分數。所以我們把原來的整數擴展為有理數。這是另一種語言體系的轉換,我們使得運算的范圍擴大了。
然後我們開始學習整式(字母不做分母的代數式,包括單項式和多項式)的加減和乘法,並且學了整式乘法的逆運算——因式分解,即如何將一個復雜多項式轉化成簡單多項式的乘法;並且從另一條主線上,我們也學習了整式方程即一元一次方程、二元一次方程和不等式。整式也能夠做除法,變成分式,同時也可以做分式方程。但是,在解一元二次方程時遇到了開方問題,這種運算與四則運算不同,得到的結果不一定是有理數,於是我們接受了無理數的存在,並將數系擴充到實數。開方運算有一些特殊的運演算法則,例如負數不能開平方之類,這種法則同樣代數式同樣要遵守,這就是根式。有了這些基礎,一元二次方程的問題就能夠解決了,我們得到了一元二次方程的通用解法——求根公式。
學了好了基本的運算(加減乘除和開方)和方程以後,引入了函數,引入函數以後,數學的語言體系就又提高了一個新的層次。研究函數和應用函數,是分析的主要任務。函數之重要性,說它是現代數學最重要的概念也不為過。世界上的事物是普遍聯系的,但是傳統的自然哲學對這種聯系的分析都是定性的:比如用火加熱,水的溫度就會上升;用力越大,彈簧拉得越長;而現代科學則需要對這種聯系進行定量分析,找到聯系的普遍規律,這就需要用到函數工具。初中物理里的關於加熱的公式Q=Cm(T2-T1)、彈簧受力的公式N=k(x-x0)以及高中物理的萬有引力公式F=GMm/r2,本質上都是這種藉助函數工具進行定量研究的產物。函數是中學數學承上啟下的核心知識,初中函數的應用基本是在解方程和不等式上,而高中數學除了一部分幾何和統計知識以外,幾乎完全建構在函數理論之上。
高中數學首先引入集合語言,引出後文對函數的定義。集合論是現代數學各個分支領域的基石,但是高中水平的數學幾乎用不到這個東西,只需要會進行簡單的集合運算就可以。然後開始深入研究函數的單調性、奇偶性等一般性質,初等函數(指數函數、對數函數、冪函數、三角函數)的特殊性質,以及一種自變數為正整數,因變數為實數的特殊函數——數列,即實數序列。三角函數引出平面向量,其運演算法則反映出的向量代數也是一次數學語言的重大飛躍:我們發現能夠運算的不僅是數和代數式,還有有序的數和代數式。然後是不等式,你也許會疑惑學這么復雜的不等式干什麼,但到了大學學習真正的數學分析就會知道,不等式證明技巧是學習數學分析必備的本領。這些基礎打牢以後,就開始學習極限和導數,高中數學到此就戛然而止了。函數、數列、不等式、導數是高中數學最難的部分,這些也是高等數學基礎的基礎。高考題的最後一題,基本上就是函數、數列、不等式和導數的綜合應用。
到了大學,接續這部分的內容就是大名鼎鼎的高等數學,其中絕大多數內容也就是微積分。數學專業則學習數學分析,這是用更嚴密的論證體系來學習微積分。不過,無論是高數、數分,研究的函數都比較直觀,基本上都是連續函數,或者說黎曼可積函數。而不滿足上述條件的實函數,則需要基於集合論、測度論和勒貝格積分的實變函數理論來研究。在另一個方向上,函數的變數也不都是實數,如果變數是復數,則由復變函數或者復分析這門學科來研究。自變數除了數以外,還可以是函數,函數的函數叫做泛函,研究泛函以及無限維空間變換的理論叫做泛函分析,這是比實分析和復分析更加抽象的數學。此外,方程中也可以用微積分,研究如何求解包含微積分的方程的領域叫做微分方程,其中研究包含一元函數微積分的叫常微分方程,研究包含多元函數微積分的叫偏微分方程。分析領域的各個學科都跟理論物理的學習和研究有很大的關聯。
高中的平面向量和空間向量,其主要作用是為解三角形和立體幾何證明打基礎,從應用角度講算作幾何模塊更恰當。學到平面向量和空間向量,中學代數的內容就戛然而止了。到了大學,一次方程組被重新拉回視野。因為一次函數的圖像是一條直線,所以一次方程組也叫線性方程組,線性代數就是從研究線性方程組的通用解法開始入門。通過運用n元向量、矩陣和行列式,最終得到了線性方程組的通用解法——克萊默法則(但是後面我們會知道,行列式的計算非常復雜,克萊默法則遠不如高斯消元法好用,線性代數和高等代數只是拿線性方程組作為引子,引出線性空間這個核心,而這種解線性方程組的任務就交給計算數學專業的數值代數課程了)。與此同時,我們運算的對象也擴展到了向量和矩陣;我們發現,這些運算很相似,都有類似的結構,數學家將其進一步抽象為線性空間,並將研究線性空間的性質和變換作為線性代數的主要任務。而我們直觀上能夠感受到的三維空間,則是線性空間的一種特殊形式。為了研究這種特殊形式,引入了雙線性函數和二次型,得到了內積運算,進而將線性空間特殊化為度量空間,這樣線性空間理論就有了能夠用於幾何研究或解決實際問題的用途。線性空間是最簡單的代數學研究對象,除此以外代數學的研究對象還有群、環、域等,研究這些對象及其性質的後續課程叫做抽象代數或者近世代數。初中幾何遇到的三等分角、立方倍積和化圓為方三大不可作圖問題的證明就需要用到抽象代數的知識。高中選修3-4對稱與群、4-2矩陣與變換,分別對應著群論(抽象代數的部分內容)和矩陣代數(線性代數的簡單部分),可以課余時間讀一讀。
然後我們再說說幾何:
幾何的英文是Geometry,Geo-是「大地」的詞根,-metry是「測量」的詞根。Geometry直接意思就是「土地測量」。幾何起源於古埃及,因為埃及的尼羅河每年的周期性泛濫帶來大量肥沃土壤,但是土地的分界也都會被沖毀,因此每年古埃及人都要重新丈量土地,在長期實踐中總結的測量技術逐漸發展成為最初的幾何學
『陸』 數學真正的意義
數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
『柒』 數學的重要性及深遠意義
同學們好!今天的講座,我代表高一數學備課組全體老師,和同學們交流、討論高中數學的學習,希望對同學們今後的數學學習有所幫助。
我來講座時,我的愛人告訴我:「要讓學生學好數學,就應當使學生喜歡數學、欣賞數學、親近數學,要讓學生感到數學學習的快樂。」我希望今天的講座能給同學們帶來一點快樂。
一、什麼是數學
1、偉大的革命導師恩格斯說:「數學是研究現實世界數量關系和空間形式的一門科學。」恩格斯是與馬克思齊名的世界人民革命的導師,但數學為恩格斯的偉大增添了無限的光輝。
數學是什麼?這是數學家仍不斷思索的問題,數學家的語言是朴實的,聽一聽數學以外的聲音吧:
音樂家說:「數學是世界上最和諧的音符。」
體育老師說:「數學是鍛煉人的思維的體操。」
植物學家說:「世界上沒有比數學更美的花朵。」
美學家說:「哪裡有數學,哪裡才有真正的美。」
詩人說:「離開了數學的思維,任何一首詩篇都是胡言。」
再聽一聽哲學家的心聲吧:「或許你可以不相信上帝,但是你必需相信數學,世界什麼都在變,唯有數學的理論是永恆的。」
2、世界各民族都有自己的語言,有些語言為多個民族所共用,在地球上,沒有一種語言能統一地球,但是,數學語言已成為世界各民族的共用。
數學語言是一種科學的語言,她使人表達問題時條理清楚、准確、簡潔、結構分明。
3、數學對現代社會產生了最深遠的影響,人們可能會講,計算機的發明才有劃時代的意義,其實,同學們還不知道,計算機的發現者正是數學家馮·諾伊漫。
而計算機更高層次的運用還得靠數學,數學就是這樣,樸素得從不張揚自己,默默為人類奉獻著。
是金子總會發光,現代社會,人們普遍認識到數學是一種文化素養,沒有現代數學就沒有現代化,沒有現代數學的文化是註定要衰落的。
八十年代,美國總統曾簽署一道法令,號召「美國公民全民族提高數學素養。」引起世界的震驚。事情的起因是這樣的,美國國家統計局調查發現,八十年代美國的國家科技發展緩慢,追根求源,在於對數學的重視不夠。
前不久,美國總統奧巴馬在國情咨文中又強調這一法令。
現在,全世界都有了這樣的共識:「國家的富強在教育,教育的根本在科技,科學的根本是數學。」高科技本質上是數學技術。
4、數學成為自然科學的基礎,這是物理學家、化學家、生物學家成功發後自內心的感受。馬克思說:「一門科學只有成功的運用了數學,才能達到完善的地步。」
5、在社會經濟領域,人們統計發現:在諾貝爾經濟學獎的獲獎者中,大部分是數學家,或者有研究數學的經歷,為什麼呢?是數學教會了人們如何思考,是數學教會了人們如何創新,這就是數學,一門改變和推動了世界的學科。
二、為什麼學數學
1、數學是很有趣的,深入到數學的世界就是這樣
(1)鄰居家的兩個小孩爭大小:鄰居家的兩個小孩剛上小學,有一天,我問他們倆誰是老一,誰是老二,他們如實做了回答,我又問他們1和2誰大,他們也都答對了,當我再問他倆誰大時,他們倆爭論起來「我是老一,我大。」「我是老二,二比一大,所以我大。」
爭得不可開交,當我告訴他們學好數學就知道答案了,他們帶著凝惑離開了。
(2)鬼巫人的故事:過去在農村,經常有人講這樣的經歷:「在一個伸手不見五指的夜晚,某人從一個村莊到鄰近的另一個村莊,走了一夜沒有到達,天亮時發現自己在一塊墳地里打轉轉了一夜。」這在農村被叫做鬼巫人,是很恐怖的事,但學習了圓的知識,你就很容易知道真正的答案。
2、數學是很有用的:一些家長告訴孩子,學不好數學上街會受騙,這是生活的基本要求。這個問題的另一個說法是:「學好了數學就不被人騙或去騙人。」
人們完全不用擔心,數學學得好的人,完全進入了一個高層次的境界,擺脫了世俗的觀念,更追求數學的高尚和完美。
前幾年,中國的社會腐敗成為嚴重的社會問題,國家雖然採取了一些措施,總不能徹底得以解決,有人就提出在黨員幹部中普及數學知識,提高幹部的數學素養,這樣可以有效防止腐敗。
其實就是學數學的人,追求高尚和完美,同時通過數學算一算,腐敗的代價是慘重的。
3、青年人都愛打扮自己,你知道怎樣根據自己的身材和性格打扮自己嗎?數學就可以告訴你。
身材細高像豆芽的,要把自己裝扮得強壯些,就應穿橫條的衣服。
身材胖一些的,要把自己裝扮瘦高些,就應穿豎條狀的衣服。
想表現青春活潑的,可以穿斜波紋的衣服,真的給人動感地帶的感覺。
4、放眼世界來看,第一次世界大戰是化學戰,第二次世界大戰是物理戰,而現代戰爭則是數學戰。
5、華羅庚說:「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁等,無處不有數學的重要貢獻,甚至有些問題數學方法是唯一的出路。」
三、怎樣學好高中數學
1、從初中到高中的變化
進入高中後,同學們的成績會發生很大的變化,每一屆學生都是這樣,對此,我們學校領導非常重視,在同學軍訓期間進行了一次摸底考試,還沒上高中課,結果與中考成績就形成很大的反差,有前100名成績的學生退到800名以外,也有1000名以外的學生進入了年級前100名。
學校在積極探索這種原因,一是同學經過緊張的中考,考取了理想的一中,有些同學產生了鬆口氣的想法,對初中的知識不復習鞏固,產生了遺忘;
二是中考的試卷是水平考試,分數不能完全代表智力水平,尤其是中考數學試卷,非常容易,中等生也有考滿分的。
高一上了一段時間後,成績的分化就突出出來,有一部分學生中考成績優秀,成績下降嚴重,甚至學生和家長產生這樣的困惑:「在初中怎樣的好,現在怎麼了?」
這種現象不僅我們學校有,全國的中學,包括國家級重點中學都是普遍存在的。
究其根源是初中、高中的反差較大,下面我們做一個初中、高中的對比:
(1)知識的差異:
初中:內容少、淺、面窄,常量、題型少、簡單,可反復磨煉,甚至死記硬背就可以考出高分。
高中:知識多、深、面寬;變數、題多,沒有時間反復。
(2)教學方法差異:
初中:課堂容量小,講速慢,例型少,反復,模仿。
高中:課堂容量大,知識復雜,速度快,題型多,很少反復。
(3)學法差異:
初中:自學能力差,講授,被動學,反復練。
高中:自主探索,主動學習,獲得知識的渠道寬。
2、高中數學學習的技術和方法
當前階段,同學們要解決的是高中數學學習的技術和方法,以下是同學們值得重視的:
(1)從被動接受知識,轉化為主動探索,積極適應高中數學老師的教學方法。有人說得好,當你不能改變環境時,就積極主動改變自己。
(2)從死記便背、模仿,轉化為對概念、理論的深刻理解。
(3)從單純做題,轉移到歸納、提練數學思想、方法,舉一反三。高中數學中含有豐富的數學思想和方法,是我們數學學習的指南。什麼是思想,思想就是想,什麼是方法,方法就是落實想的做法。比如一個人想過河,思想就是想過河,方法就是怎樣過河……
(4)課前預習,記下不懂的問題,對記下的問題可研究、討論,聽課解決,帶著問題聽課,目的明確,增加註意力,提高聽課的效果。
(5)做好數學筆記,記下課本上沒有的,老師對概念更深刻的理解,和為高考而增加和深化的課外知識以及一些重要結論。
(6)多做數學,學好數學的有效途徑就是「做數學」。
在比較初級的階段,就是在理解數學基本內容的基礎上多做習題(這是必要的),包括獨立地做一些較難而有啟發性的題目。
因為我們知道,習題只給了條件和結論,甚至只給了條件和問題,那麼解決問題的過程實際就是一個再創造的過程,而較難的習題常要經過一段時間的反復思考,這種再創造過程自然可以培養創新能力,而一段時間的反復思考,則可以鍛煉學生的堅持性,培養你們堅忍不拔,百折不撓的精神。
我國軍事家、思想家葉劍英給學生寫過一首詩:「攻城不怕堅,攻書莫畏難,科學有險阻,苦戰能過關。」
但也要注意,問題應是「好」的問題,是對課程內容及思想方法的深入理解和掌握有幫助的問題,是學習中自然產生的基本題。問題應當有思考性,還可以有適當的開放性,而不是那種造作的偏、怪題。
現在的資料,多為經濟利益作想,不考慮循序漸近,難、偏、怪很多,這主要迎合部分學生追求偏難的想法,對概念的深刻理解不利。
數學的學習,應當在掌握基礎知識、基本技能的基礎上體會數學的基本思想,而掌握了數學思想方法和精神實質,就可以由不多的幾個公式、理論,演繹出千變萬化的生動結論,顯示出無窮無盡的威力,這正是數學中的以不變應萬變。
3、打開解決問題的通道
我國數學家華羅庚說得好「問題是數學的心臟。」心臟不停,才有美麗的生命,解決問題就成了學好數學的根本,這也是同學們最關心的,有了問題怎樣辦,解決問題的途徑有哪些(怎樣讓解決問題的渠道暢通)。
對數學學習中的問題,我們可以為問題建立一個糾錯檔案,這對每一位同學來說,都是你學數學最寶貴的東西,值得珍藏。
怎樣記錄呢?一是把錯題或問題分章別類記下來;二是記下錯誤的過程;三是對錯誤的根源進行尋找分析;四是給出正確的答案。建立起來以後,可以常回家看看,要不怕麻煩,堅持下來就是勝利。
有的同學,解決問題的路徑很單一,造成大量的問題積壓,最後就形成了頑症,就難解決了。
解決問題,要打開多條道路,使得解決問題的路暢通無阻。有個葯品廣告說得好:「通則不痛,痛則不通。」
當前,我們有哪些解決問題的道路呢?
(1)自己獨立鑽研或查找資料,這樣解決問題深刻,同時也培養鍛煉了學數學的能力。
(2)請教老師,由於課間時間短,老師解答問題的時間有限,但是老師會通過幾個同學提問,把共性的東西歸納出來講解,這可能也有你的問題,要不恥下問(事例)。
為了便於同學提問,我現在設計有「學生數學問答紙」,同學們可以自由使用,這樣解決問題的容量就大大增加了。
(3)同學之間相互協助,這是一條比較寬廣的大道。同學們在一起的時間長,思維水平接近,易於溝通。要積極利用好這一渠道,就要建立良好的同學關系,互相協助。
(4)積極開辟解決問題的新途徑,只有想不到,沒有辦不到。渠道通了,問題解決了,哪有不進步的道理呢?成績只有屬於你,勝利只有屬於你。
人造就了數學,數學也必將造就一個新的你
馬克思說:「一門科學只有當它達到了能夠成功地運用數學時,才算真正發展了。」在前幾次科技革命中,數學大都起到先導和支柱作用。
我們不能要求決策者本人一定要懂得很多數學,但至少要經常想想工作中有沒有數學問題需要請數學家來咨詢。
因為數學是科技創新的一種資源,是一種普遍適用的並賦予人以能力的技術。
一、世界強國與數學強國
數學實力往往影響著國家實力,世界強國必然是數學強國。數學對於一個國家的發展至關重要,發達國家常常把保持數學領先地位作為他們的戰略需求。17-19世紀英國、法國,後來德國,都是歐洲大國,也是數學強國。17世紀英國牛頓發明了微積分,用微積分研究了許多力學、天體運動的問題,在數學上這是一場革命,由此英國曾在數學上引領了潮流。
法國本來就有良好的數學文化傳統,一直保持數學強國的地位。19世紀德、法爭雄,在數學上的競爭也非常激烈,到了20世紀初德國哥廷根成為世界數學的中心。
俄羅斯數學從19世紀開始崛起,到了20世紀前蘇聯時期成為世界數學強國之一。特別是蘇聯於1958年成功發射了第一顆人造地球衛星,震撼了全世界。當時美國總統約翰?肯尼迪決心要在空間技術上趕超蘇聯。他了解到:蘇聯成功發射衛星的原因之一,是蘇聯在與此相關的數學領域處於世界的領先地位。此外,蘇聯重視基礎科學教育(包含數學教育)也是它在基礎科學研究中具有雄厚實力的一個重要原因,於是下令大力發展數學。
第二次世界大戰前美國只是一個新興國家,在數學上還落後於歐洲,但是今天他已經成為唯一的數學超級大國。戰前德國納粹排猶,大批歐洲的猶太裔數學家被迫移居美國,大大增強了美國的數學實力,為美國打勝二戰、提升戰後的經濟實力做出了巨大貢獻。蘇聯發射第一顆人造地球衛星後,美國加強了對數學研究和數學教育的投入,使得本來在科技界、工商界、軍事部門等方面就有良好應用數學基礎的美國,迅速成為一個數學強國。蘇聯、東歐解體後,美國又吸納了其中大批的優秀數學家。
二、數學及其基本特徵
數學是一門「研究數量關系與空間形式」(即「數」與「形」)的學科。 一般地說,根據問題的來源把數學分為純粹數學與應用數學。研究其自身提出的問題的(如哥德巴赫猜想等)是純粹數學(又稱基礎數學);研究來自現實世界中的數學問題的是應用數學。利用建立數學「模型」,使得數學研究的對象在「數」與「形」的基礎之上又有擴充。各種「關系」,如「語言」 「程序」 「DNA排序」 「選舉」、「動物行為」 等都能作為數學研究的對象。數學成為一門形式科學。
純粹數學與應用數學的界限有時也並不那麼明顯。一方面由於純粹數學中的許多對象,追根溯源是來自解決外部問題(如天文學、力學、物理學等)時提出來的;另一方面,為了要研究從外部世界提出的數學問題(如分子運動、網路、動力系統、信息傳輸等)有時需要從更抽象、更純粹的角度來考察才有可能解決。
數學的基本特徵是:
一是高度的抽象性和嚴密的邏輯性。
二是應用的廣泛性與描述的精確性。
它是各門科學和技術的語言和工具,數學的概念、公式和理論都已滲透在其他學科的教科書和研究文獻中;許許多多數學方法都已被寫成軟體,有的數學軟體作為商品在出售,有的則被製成晶元裝置在幾億台電腦以及各種先進設備之中,成為產品高科技含量的核心。
三是研究對象的多樣性與內部的統一性。
『捌』 學數學的意義是什麼
數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題。掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學。 可以解決生活中的許多實際問題啊 如果沒有數學可以說就沒有這個世界!有很多看似枯燥又無理取鬧的問題在實際生活中都有意想不到的應用。比如計算機的二進制,比如圓錐曲線的應用,也許你只知道它很麻煩很變態,實際上反光鏡、冷卻塔的原理都少不了它!數列很無聊,但是魔術師們的洗牌技巧都在這里,不懂數學的人就會被騙!遺忘遷移才讓我們可以放心大膽地輸入各種帳號和密碼,沒有地圖塗色問題,一塊指甲大的電路板恐怕檢測到明年也不知道哪裡短路…數學的作用就是問一些看似精神病但是完全有可能推動人類進步的問題,學數學的意義就是不光會做老師們純粹為了考大家的題目,更重要的是把這些討厭的問題變成人人都喜聞樂見的實際性成果,數學家們是默默無聞卻強大無比的歷史推進者!掌握數字規律,訓練邏輯思維,能訓練人們的思維能力.開發腦力。更理性的去認識這個世界。數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題 掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學。 意義深遠!如果沒有數學可以說就沒有這個世界!有很多看似枯燥又無理取鬧的問題在實際生活中都有意想不到的應用。比如計算機的二進制,比如圓錐曲線的應用,也許你只知道它很麻煩很變態,實際上反光鏡、冷卻塔的原理都少不了它!數列很無聊,但是魔術師們的洗牌技巧都在這里,不懂數學的人就會被騙!遺忘遷移才讓我們可以放心大膽地輸入各種帳號和密碼,沒有地圖塗色問題,一塊指甲大的電路板恐怕檢測到明年也不知道哪裡短路…數學的作用就是問一些看似精神病但是完全有可能推動人類進步的問題,學數學的意義就是不光會做老師們純粹為了考大家的題目,更重要的是把這些討厭的問題變成人人都喜聞樂見的實際性成果,數學家們是默默無聞卻強大無比的歷史推進者
『玖』 學習數學的重要性學好小學數學的重要意義
小學數學是通過教材,教小朋友們關於數的認識,四則運算,圖形和長度的計算公式,單位轉換一系列的知識,為初中和日常生活的計算打下良好的數學基礎。
人類通過合適的知識載體能不斷地、自覺地提高人的素質,培養人的優良品質,數學正是這樣一種重要的載體。因為,當我們面對一串串數學符號進行計算和推理時,表面上,我們是在操作符號,實際上,是計算和推理在引導著我們的精神。
所以,對數學知識的掌握就意味著領悟一種現代科學的語言和工具,學到一種理性的思維模式,培育一種審美情操。
(9)學數學的意義是什麼擴展閱讀:
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算。數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備。但尚未出現極限的概念。
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發展。
『拾』 數學的意義是什麼
數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題。
掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學。
有很多看似枯燥又無理取鬧的問題在實際生活中都有意想不到的應用。比如計算機的二進制,比如圓錐曲線的應用,也許你只知道它很麻煩很變態,實際上反光鏡、冷卻塔的原理都少不了它!
嚴謹性
嚴謹是數學證明中很重要且基本的一部分。數學家希望他們的定理以系統化的推理依著公理被推論下去。這是為了避免依著不可靠的直觀,從而得出錯誤的「定理」或「證明」。
而這情形在歷史上曾出現過許多的例子,在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹。
牛頓為了解決問題所作的定義,到了19世紀才讓數學家用嚴謹的分析及正式的證明妥善處理。數學家們則持續地在爭論電腦輔助證明的嚴謹度。