導航:首頁 > 數字科學 > 數學有什麼美

數學有什麼美

發布時間:2022-04-25 23:53:00

A. 數學之美

隨著社會的迅猛發展,經濟水平不斷提高,人們生活質量越來越好。但與此同時帶來的是人們對於資本的渴求的膨脹,人們越來越注重實際利益,注重實業重工的發展,相對而言,理論上的一些研究就理所當然的被視作一種無用之學科。首當其沖的便是數學,在中國,幾乎所有人都認為在大學里學純數學將來是沒有什麼前途的,事實上,在西方發達國家並非如此。在哲人的眼裡,數學是如此美麗,它巧奪天工,不可言喻。保羅•埃爾德什形容他對數學的觀點:「為何數字美麗呢?這就像在問貝多芬第九交響曲為什麼會美麗一般。若你不知道為什麼,其他人也沒辦法告訴你為什麼。我知道數字是美麗的,且若它們不美麗的話,世上也沒有事物會是美麗的了。」

一、數學之美所謂何然

數學美是自然美的客觀反映。歷史上曾有多位學者名人對數學美提出自己的見解,我國著名數學家華羅庚說過:「就數學本身而言,是壯麗多彩、千姿百態、引人入勝的……認為數學枯燥乏味的人,只是看到了數學的嚴謹性,而沒有體會出數學的內在美。」數學家徐利治說:「作為科學語言的數學,具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。」 隨著數學的發展和人類文明的進步,數學美的概念會有所發展,分類也不相同,但它的基本內容是相對穩定的,這就是:對稱美、簡潔美、統一美和奇異美。
數學的對稱美,從古希臘時代起就被認為是數學美的一個基本內容。所謂對稱性,既指組成某一事物或對象的兩個部分的對等性。數學中的這種對稱處處可見,較為形象的就是我們司空見慣的一些軸對稱圖形,尤其是圓,真可謂是三百六十度完全對稱無死角。畢達哥拉斯就曾說過:「一切平面圖形中最美的是圓,在一切立體圖形中最美的是球形。」這正是基於這兩種形體在各個方向上都是對稱的。而對於我來說,關於對稱印象最深刻的便是小學五年級的時候老師讓我做的一道數學題。當時老師在報紙上看到這道題,就拿給同辦公室的幾個老師做,結果居然那幾個老師都沒有做出來,於是老師就把我叫到辦公室去當場做,看小孩子的思維會不會活躍一些,題目是一個四位數乘以九得到的數等於這個數的倒序。我當時一看這題目,心想既然是對稱的,那麼第一個數字必是1,然後乘以九,那麼最後一個數字必是9,接著我又想第二個數字最大是1但一代進去顯然不行,那麼就只能是0了,這么一來就輕而易舉地猜出第三個數字是8,所以答案就是1089*9=9801.我記得自己當時是很快就把答案想出來了,老師們都很詫異,連連誇獎。當時心裡真的是特別高興,也是第一次對數字的對稱性有了基本的概念。現在想想那道題其實真的很簡單,但就是這么簡單的數學題里也蘊含著數學那高度的對稱美。
數學的簡潔美,是人類思想表達簡明化要求的反映。愛因斯坦說過:「美在本質上終究是簡單性。」 數學語言本身就是最簡潔的文字,同時反映客觀規律極其深刻,許多復雜的客觀現象,總結為一定的規律時,往往呈現為十分簡單的公式。歐拉給出的公式:V-E+F=2,堪稱「簡單美」的典範。世間的多面體有多少沒有人能說清楚。但它們的頂點數V、棱數E、面數F,都必須服從歐拉給出的公式,一個如此簡單的公式,概括了無數種多面體的共同特性,令人驚嘆不已。正如偉大的希而伯特曾說過:「數學中每一步真正的進展都與更有力的工具和更簡單的方法的發現密切聯系著」。如笛卡爾坐標系的引入。對數符號的使用,復數單位的引入。微積分的出現都體現了數學外在形式更簡潔,內容更深厚。數學中絕大部分公式都體現了「形式的簡潔性,內容的豐富性」。 數學的簡潔美還表現在形態上,即數學美的外部表現形態,是數學定理和數學公式(或表達式)的外在結構中呈現出來的美。形態美的主要特徵,在於它的簡單性。
數學的統一美,是審美對象在形式或內容上的某種共同性、關聯性或一致性,它能給人一種整體和諧的美感。一切客觀事物都是相互聯系的,因而,作為反映客觀事物的數學概念、數學定理、數學公式、數學法則也是互相聯系的,在一定條件下可處於一個統一體之中。例如,從結構上分析,解析法、三角法、復數法、向量法和圖解等具體方法,都可以統一於數形結合法。歐幾里德的《幾何原本》,把一些空間性質簡化為點、線、面、體幾個抽象概念和五條公設及五條公理,並由此導致出一套雅緻的演繹理論體系,顯示出高度的統一性。布爾基學派的《數學原本》,用結構的思想和語言來重新整理各個數學分支,在本質上揭示數學的內在聯系,使之成為一個有機整體,在數學的高度統一性上給人以美的啟迪。

二、數學之美所以何能
數學之美在各位先知哲人的眼裡是如此的美麗,那麼數學是憑著什麼從幾個簡單的阿拉伯數字和拉丁字母發展為如此瑰麗傳奇的數學世界的呢?僅憑個人的力量顯然是遠遠不夠的,它是數千年來祖輩們世世代代傳承積累下來的。
數學之美是人民之於數學的智慧結晶。人們在日常的生活中總會遇到一些需要用數學來解決的小問題,然後就有人提出一個改進的小方法,讓計算變得更為容易,這樣日積月累,慢慢地便使得數學的土壤越來越肥沃,培育出更多的數學芬芳之果,讓數學這個世界越變越豐富,越變越美麗。我不是數學考古專家,不能調研到什麼具體的人民對於數學方面的小改進。但是我可以講講自己的例子。身邊的人都知道我的速算是很厲害的,倒不是我有多聰明,而是我會把一些難算的式子在腦子里做一些的變換然後再計算,這樣就容易多了,就我個人而言,這改進雖然很小,或者都稱不上是改進,但是就是因為人民大眾這樣一點一滴的積累,使得數學越來越美。
數學之美是智者之於數學的靈感源泉。我國數學家陳景潤身居陋室,但為了攻破歌德巴赫猜想這一世界數學難題,不斷演算,通過努力終於摘取了數學皇冠上的明珠。接下來我講一個蒲豐用投針求圓周率的近似值的試驗。有一天蒲豐邀請許多賓朋來家做了一個奇特的實驗。他事先在白紙上畫好了一條條有等距離的平行線,將紙鋪在桌上,又拿出一些質量勻稱長度為平行線間距離之半的小針,請客人把針一根根隨便仍到紙上,蒲豐則在一旁計數,結果共投2212次,其中與任意平行線相交的有704次,蒲豐又做了一簡單的除法 ,然後他宣布這就是圓周率的近似值,還說投的次數越多越精確。這個實驗使人震驚,圓周率和一個表面看來毫不相乾的隨便投針實驗溝通在一起。然而,這確實是有理論根據的。計算圓周率的這一方法新穎、奇妙而讓人叫絕。
數學之美是社會之於數學的發展需要。我們面臨一個科學技術迅猛發展的時代。信息的數字化和信息的數學處理已經成為幾乎所 有高科技項目共同的核心技術。從事先設計、制定方案,到試驗探索、不斷改進,到指揮控制、具體 操作,處處倚重於數學技術。許多國家認識到,發展高清晰度電視是未來經濟技術競爭的主戰場之一。應該指出,電視屏幕不僅是現代人們日常生活所不可缺少的,而且可能通過聯網成為信息傳 遞處理的工作面。幾乎所有重要的工作崗位都將與之有關。數學技術在如此重要項目的激烈較量 中起了決定作用。1991年的海灣戰爭是一場現代高科技戰爭,其核心技術竟然也是數學技術。這一事實引 起人們不小的驚訝。美國總結海灣戰爭經驗得出結論是:「未來的戰場是數字化的戰爭」。

二、數學之美所知何用
現如今,越來越多的大學生在填大學專業方向時,都不願填寫數學這個專業,理由是畢業後工作不好找。我自己也是,其實我個人是非常熱愛數學的,我可以一天不吃不喝在那邊做一道數學題並且樂在其中。但是最終還是迫於家庭和社會各方面壓力選擇了大家普遍認為將來就業可能比較好的電子專業,雖然我自己不是很喜歡,但是既來之,則安之。然而,在此我還是要說學習數學是有用的,而且是非常地有用,未來的社會必是數字化的時代。
數學之美的社會應用——揭示自然規律,指導工程設計。1995年1月,在販神大地震之後,美國利用數學模型進行地震預測,預告本世紀末加州南部可能發生大地震;1995年3月,我國中央人民廣播電視台宣布啟用數字式轉播方式,指出以前的模擬式轉播方式效果差,所以改用新的轉播方式;1995年6月,歐州聯盟開會研討未來數字化通信的統一制式;1996年2月,我國電子工業部宣布「九五計劃」開發重點:數字化信息技術。所訂的兩個重點研製項目是:數字式高清晰度電視接受機樣機和數字式激光碟;1996年4月,我國國家科委發布招標公告,正式宣布數字式高清晰度電視開發項目。僅以幾件事為例就能清楚地看到數學對當代人們的生產和生活所起的重要作用。
數學之美的突出表現——黃金比例分割。黃金分割又稱黃金律,是指事物各部分間一定的數學比例關系,即將整體一分為二,較大部分與較小部分之比等於整體與較大部分之比,其比值為1∶0.618或1.618∶1,即長段為全段的0.618。0.618被公認為最具有審美意義的比例數字。採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為"黃金分割"。
伯特蘭•羅素以下列文字來形容他對數學之美的感覺:數學,如果正確地看它,則具有……至高無上的美——正像雕刻的美,是一種冷而嚴肅的美,這種美不是投合我們天性的微弱的方面,這種美沒有繪畫或音樂的那些華麗的裝飾,它可以純凈到崇高的地步,能夠達到嚴格的只有最偉大的藝術才能顯示的那種完美的境地。一種真實的喜悅的精神,一種精神上的亢奮,一種覺得高於人的意識——這些是至善至美的標准,能夠在詩里得到,也能夠在數學里得到。
參考文獻:
(1)(美)西奧妮•帕帕斯 . 理性的樂章--從名言中感受數學之美. 王幼軍 譯. 上海:上海科技教育出版社,2010.
(2)(英)波斯特 . 數學證明之美 . 賀俊傑,鐵紅玲 譯 . 湖南:湖南科技出版社,2012
(3)(美)克利福德•A•皮科夫 . 馬東璽 譯 . 湖南:湖南科學技術出版社,2010
(4)吳軍 . 數學之美系列文章 . 2006——2007.

B. 數學的美體現在生活的哪些方面

就比如說生活當中很多東西就是黃金分割或者是生活當中的很多東西,就是按照這個圓形矩形三角形這種東西來設計,其實這就是數學的美,它不光能夠簡單的美,而且有實用性。

C. 數學之美的內容

數學美是自然美的客觀反映,是科學美的核心。簡言之數學美就是數學中奇妙的有規律的讓人愉悅的美的東西。

作為科學語言的數學,數學具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。

數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。

(3)數學有什麼美擴展閱讀:

數學美有別與其它的美,它沒有鮮艷的色彩,沒有美妙的聲音,沒有動感的畫面,它卻是一種獨特的美。

德國數學家克萊因曾對數學美作過這樣的描述:「音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科技可以改善物質生活,但數學卻能提供以上一切。」

大多數的數學家會由他們的工作及一般數學里得出美學的喜悅。他們形容數學是美麗的來表示這種喜悅。有時,數學家會形容數學是一種藝術的形式,或至少是一個創造性的活動。通常拿來和音樂和詩歌相比較。

D. 總有人說數學很美

林達華教授的《數學之美》

這個9分鍾的視頻是我花了100個小時構思和製作的,希望能讓你感受到數學的強大,還有我們對先人應持有的感激。不同於其他視頻,該視頻里每個台詞都經過篩選,盡可能

E. 「數學之美」有什麼例子

例子如下:

數學之美的例子還是比較多的。比如歐拉,歷史上最重要的數學家之一,也是最高產的數學家,平均每年能寫八百多頁論文。我們經常能見到以他名字命名的公式與定理,可能最廣為人知的便是「世界上最美的公式」歐拉公式。

先不說它的具體意義,能將自然數、虛數、π、0 和 1 這幾個最基本的元素組合在一起,就是令人驚嘆的美。歐拉公式將指數函數的定義域擴大到了復數域,同時建立三角函數和指數函數的關系,被譽為數學中的天橋。

簡介:

數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。

F. 數學美的內涵是什麼闡述數學美的內涵。

一、數學的簡潔美
簡潔本身就是一種美,而數學的首要特點在於它的簡潔。大幹世界,紛繁多樣,在雜亂無章的客觀現象中,抽象出數學理論,用簡單、清晰的數學形式來表達,反過來再解釋、處理更多的客觀事物和現象,這就是數學的簡潔美。就象優秀的詩詞講究用最少的文字表達最豐富的內容一樣,數學中的公式、法則、定理等,用精煉的語言和符號,高度概括了現實世界量的關系和結構。你看,世界上存在著何其多的三角形,形態之多令人難以想像,然而它們的面積計算,都可以高度凝結成這樣一個關系式廣計算所有多邊形的面積。形式是如此的簡單,而應用是那麼的廣5=十。A,由此我們還能推泛。數學符號的產生發展,使得數學的表達式極其簡潔。一大堆的數字計算,一連串的數字算式,是多麼讓人心煩理不出一個頭緒來。但是我們可用一個數學表達式將它們全部概括進來。連乘積n.(n一1)(n-2)……3·2·1寫起是多麼的麻煩啊,可以用階乘符號「n!」十分簡潔地表示了出來。使用符號「》」來進行推理,給人一種嚴謹有序清晰明快的美感。
二、數學的統一美
把眾多的概念、公式和理論,用一個更高層次的概念、公式或理論統一起來,會使人們得到一種心理上的愉悅,這就是數學的統一美。在數學研究中,人們總是在謀求更高程度的抽象,以便有更大的概括面和更廣的適用范圍,這樣許多概念又屬於一個種概念之下,許多公式又有一個統一的公式。如小學幾何中有許多概念:正方形、長方形、梯形、平行四邊形,但它們卻都是四邊形。在小學數學中,我們有三角形、平行四邊形、梯形的面積公式、雖然它們各不相同.但它們卻可用公式s=1/2(a十b)h統一起來(公式中「a為上底、b為下底、h為高)。在數學學習中,許多優秀的學生,在解題過程中,時時在追求著數學問題中存在的統一美,他們覺得只有找到一類題型的統一解答規律,才是真正掌握數學知識的主人,才能從中獲得美的享受。
三、數學的奇異美
奇異是指規律的奇巧或結果的出人預料。數學中的奇異美就象波瀾起伏的文學故事,珍貴奇異的藝術品一樣扣人心弦,給人以美的享受。無論你畫出怎樣的一個三角形,它的三條高線交於一點,三條中線交於一點。三條角平分線交於一點,其中顯示了一種奇巧的美,使人們感到三角形中似乎蘊含著一種神奇的規律,讓人驚奇、神秘。在運算中,我們會對3十9十3×9=39,4十9十4×9=49等式驚訝.因為左右兩邊的數字是如此的對稱,我們還會為4109589041096×83=341095890410968這個乘法算式拍案稱奇,因為兩乘數與積的數字競然會如此地巧合。數學中不少結論令人贊嘆,因為其巧妙無比.正是因為這一點數學才有無窮的魅力。在數學的發展史上,往往正是數學自身的奇異性的美,吸引著數學家向更新、更深的層次探索,弄它個水落石出。
四、數學美的奇異性
美在於奇特而令人驚異.——培根
奇異性是數學美的一個重要特性.奇異性包括兩個方面內容:一是奇妙,二是變異.數學中不少結論令人 贊嘆,因為其巧妙無比,正是因為這一點數學才有無窮的魅力.變異是指數學理論拓廣或統一性遭到破壞後,產生新方法、新思想、新概念、新理論的起點.變異有悖於人們的想像與期望,因此就更引起人們的關注與好奇.凡是新的不平常的東西都能在想像中引起一種樂趣,因為這種東西會使人的心靈感到一種愉快的新奇,滿足它(心靈)的好奇心,將會使之得到原來不曾有過的一種觀念.數學中許多新的分支的誕生,都是人們對於數學奇異性探討的結果.在數學發展史上,往往正是數學自身的奇異性的魅力,吸引著數學家向更新、更深的層次探索,弄它個水落石出!

G. 什麼是數學美「」「」「」「 、

黃金分隔就是典型的數學美
抽象點來說,現實中的點線面構成的美都應該劃在數學裡面
初高中學的很多東西會發現,用數學等式表示圓,橢圓,雙曲線等等
在高等數學中數學能表示出來的立體圖形更多
其實現實中的美還真有數學,而數學就是來為這些美定位的

H. 為什麼說數學是美妙的

長期以來,一個令人困惑的現象是:一些同學視數學如畏途,興趣淡漠,導致數學成績普遍低於其他學科。這使一些教師、家長乃至專家、學者大傷腦筋!「興趣是最好的老師。」對任何事物,只有有了興趣,才能產生學習鑽研的動機。興趣是打開科學大門的鑰匙。對數學不感興趣的根本原因是沒有體會到蘊含於數學之中的奇趣和美妙。一個美學家說:「美,只要人感受到它,它就存在,不被人感受到,它就不存在。」對數學的認識也是這樣。有人說:「數學真枯燥,十個數字來回轉,加、減、乘、除反復用,真乏味!」有人卻說:「數學真美好,十個數字顛來倒,變化無窮最奇妙!」認為枯燥,是對數學的誤解;感到了興趣,才能體會到數學的奧妙。其實,數學確實是個最富有魅力的學科。它所蘊含的美妙和奇趣,是其他任何學科都不能相比的。盡管語文的優美詞語能令人陶醉,歷史的悲壯故事能使人振奮,然而,數學的邏輯力量卻可以使任何金剛大漢為之折服,數學的濃厚趣味能使任何年齡的人們為之傾倒!茫茫宇宙,浩浩江河,哪一種事物能脫離數和形而存在?是數、形的有機結合,才有這奇奇妙妙千姿百態的大千世界。數學的美,質朴,深沉,令人賞心悅目;數學的妙,鬼斧神工,令人拍案叫絕!數學的趣,醇濃如酒,令人神魂顛倒。因為它美,才更有趣;因為它有趣,才更顯得美。美和趣的和諧結合,便出現了種種奇妙。這也許正是歷史上許許多多的科學家、藝術家,同時也鍾情於數學的原因吧!數學以它美的形象,趣的魅力,吸引著古往今來千千萬萬痴迷的追求者。

一、數學的趣味美

數學是思維的體操。思維觸角的每一次延伸,都開辟了一個新的天地。數學的趣味美,體現於它奇妙無窮的變幻,而這種變幻是其他學科望塵莫及的。揭開了隱藏於數學迷宮的奇異數、對稱數、完全數、魔術數的面紗,令人驚詫;觀看了數字波濤、數字漩渦令人感嘆!一個個數字,非但毫不枯燥,卻生機勃勃,鮮活亮麗!根據法則、規律,運用嚴密的邏輯推理演化出的各種神機妙算、數學游戲,是數學趣味性的集中體現,顯示了數學思維的出神入化!各種變化多端的奇妙圖形,賞心悅目;各種撲朔迷離的符形數謎,牽魂系夢;圖形式題的巧解妙算,啟人心扉,令人贊嘆!魔幻迷題,運用科學思維,「彈子會告密」、「卡片能說話」,能知你姓氏,知你出生年月,甚至能窺見你腦中所想,心中所思,真是奇趣玄妙,鬼斧神工。面對這樣一些饒有興味的問題,怎能說數學枯燥乏味呢?

二、數學的形象美

黑格爾說:「美只能在形象中出現。」談到形象美,一些人便聯想到文學、藝術,如影視、雕塑、繪畫等等。似乎數學中的數與形只是抽象的孿生兄弟。其實不然。數學是研究數與形的科學,數形的有機結合,組成了萬事萬物的絢麗畫面。

數字美:阿拉伯數字的本身便有著極美的形象:1字像小棒,2字像小鴨,3字像耳朵,4字像小旗。瞧,多麼生動。

符號美:「=」(等於號)兩條同樣長短的平行線,表達了運算結果的唯一性,體現了數學科學的清晰與精確。

「≈」(約等於號)是等於號的變形,表達了兩種量間的聯系性,體現了數學科學的模糊與朦朧。

「>」(大於號)、「<」(小於號),一個一端收緊,一個一端張開,形象的表明兩量之間的大小關系。

{[()]}(大、中、小括弧)形象地表明了內外、先後的區別,體現對稱、收放的內涵特徵。

線條美:看到「⊥」(垂直線條),我們想起屹立街頭的十層高樓,給我們是挺拔感;看到「—」(水平線條),我們想起了無風的湖面,給我們的是沉靜感;看到「~」(曲線線條),我們想起了波濤滾滾的河水,給我們的是流動感。幾何形體中那些優美的圖案更是令人賞心悅目。三角形的穩定性,平行四邊形的變態性,圓蘊含的廣闊性,都給人以無限遐想。脫式運算的「收網式」變形以及統計圖表,則是數與形的完美結合。我國古代的太極圖,把平面與立體、靜止與旋轉,數字與圖形,更作了高度的概括!

三、簡潔美

數學科學的嚴謹性,決定它必須精練、准確,因而簡潔美是數學的又一特色。

數學的簡潔美表現在:

1.定義、規律敘述的高度濃縮性,使它的語言精練到「一字千金」的程度。質數的定義是「只有1和它本身兩個約數的數」,若丟掉「只」字,便荒謬絕倫;小數性質中「小數末尾的0」中的「末尾」若說成「後面」,便「失之千里」。此種例證不勝枚舉。

2.公式、法則的高度概括性。一道公式可以解無數道題目,一條法則囊括了萬千事例。

三角形的面積=底×高÷2。把一切類型的三角形(直角的、鈍角的、銳角的;等邊的、等腰的、不等邊的)都概括無遺。「數位對齊,個位加起,逢十進一」把20以內、萬以內、多位數的各種整數相加方法,全部包容了進去。

3.符號語言的廣泛適用性。

數學符號是最簡潔的文字,表達的內容卻極其廣泛而豐富,它是數學科學抽象化程度的高度體現,也正是數學美的一個方面。a+b=b+aabc=acb=bca,其中a,b,c可以是任何整數、小數或分數。所以,這些用符號表達的算式,既節省了大量文字,又反映了普遍規律,簡潔,明了,易記。充分體現了數學語言干練、簡潔的特有美感。

四、對稱美

對稱是美學的基本法則之一,數學中眾多的軸對稱、中心對稱圖形,幻方、數陣以及等量關系都賦予了平衡、協調的對稱美。略舉幾例:

算式:

2∶3=4∶6

X+5=17-9

數陣:

數學概念竟然也是一分為二的成對出現的:「整—分,奇—偶,和—差,曲—直,方—圓,分解—組合,平行—交叉,正比例—反比例,顯得穩定、和諧、協調、平衡,真是奇妙動人。圖形:數學中蘊含的美的因素是深廣博大的。數學之美還不僅於此,它貫穿於數學的方方面面。數學的研究對象是數、形、式,數的美,形的美,式的美,隨處可見。它的表現形式,不僅有對稱美,還有比例美、和諧美,甚至數學的本身也存在著題目美、解法美和結論美。上述這些只是浮光掠影的點點滴滴,然而,也足見數學的迷人風采了。打開這本書,如同進入一個奇妙世界,呈現眼前的盡是數、形變幻的奇妙景觀,一個個「枯燥」的數字活蹦亂跳地為你作精彩表演,一個個「抽象」的概念娓娓動聽地向你講述生動的故事。它揭示了隱藏於深層的數學秘密,展示了數學迷宮的絢麗多彩。數的變幻,形的奇妙,有的令你追根究底,有的令你流連忘返,有的令你驚訝感嘆,有的令你拍案叫絕,走進這個奇妙世界,必將如咀嚼一枚橄欖果,品嘗到數學的濃濃趣味,感受到數學王國神異奇妙,從而使我們眼界大開。你將驚呼:「哇!數學原來是這么有趣啊!」

I. 數學的美體現在生活的哪些方面

數學的美體現在哪些方面
(1)完備之美

沒有那一門學科能像數學這樣,利用如此多的符號,展現一系列完備且完美的世界。就說數吧,實數集是完備的,任意多的實數隨便做加減乘除乘方開方,其結果依然是實數(注意:數學上完備是根據序列的收斂性嚴格定義的,我這里不是完備的嚴格說法,但可認為是廣義的說法)。引入虛數單位,實數集擴展到復數集,還是任意多的復數,還做那些運算,結果還是復數。

把具體的數抽象成空間中的點,在一定的假設和約定之下,可以得到完備的空間,這些空間可以是一維的,也可以是二維三維甚至多維的。三維之外,你就難以想像,但不能否認其存在。某空間的點、序列依一定的法則進行運算,依然不能離開那個空間,這就是完備性。這種完備性是很奇妙的。你可以把它想像成在一個球體中,不管你如何運動,總是不能鑽出球面。

具有完備性的空間,可以帶來許多好處。工程中用得最多的空間是Hilbert空間。順便提一句,Hilbert是個二十世紀最偉大的數學家之一。

另外,數學中的諸多體系,其本身也都是完備的,如歐式幾何,這是大家所熟知的,在幾個公理的基礎上,推演出一系列漂亮的結論,生命力經久不衰,尤其在工程運用中。

(2)對稱之美

提到對稱的美,大家首先想到的是幾何,其實幾何只是一方面,是「看得見」的那一方面。實際上,對稱性在數學中處處存在。如微積分的基本定理,展現了微分與積分之間的緊密聯系,本身具有很強的對稱性。如泛函中的對偶運算元,不但在運算上具有顯著的對稱性,在性質上也處處顯示出一致性。

(3)簡潔之美

數學中有個非常漂亮的公式,那就是歐拉公式。這個式子把數學中幾個「偉大的」數給聯繫到了一塊,它們分別是自然對數、圓周率、虛數單位以及1,其中前兩個是超越數,是無數個超越數中人類目前僅僅找到的兩個,而且這兩個對數學影響巨大。我大膽猜想,當下一個超越數被找到的時候,數學將會經歷另一場巨大的革命。虛數單位今天看起來沒什麼特別,但它剛被引進的時候曾受到眾多(大)數學家的置疑和反對,最後它終於還是進來了,而數學也開辟了一條康莊大道,那就是復變函數。

勿庸置疑,歐拉公式是簡潔而完美的,另一個可以跟它抗衡的式子出現在物理學中,那就是愛因斯坦的質能變換公式。我這種說法可能有點武斷,不過我目前只能想到這一點,呵呵。

(4)抽象之美

這一點可能會引起許多人的異議,因為在許多人看來,抽象是不好的,因為離現實太遠。可是我不這么認為,數學如果不抽象,便難以發展,雖然很多問題都是從現實引出的。數學建立在符號邏輯的基礎之上,即使是解決實際問題,也要把問題抽象出來,用數學符號表示,才可以很好的解決。另一方面,抽象的數學,能帶動你在無限的思維空間中遨遊,拋開一切雜念,成為一種美好的享受。當然,這有點理想化,但不可否認,這確實是一種美的體驗。

閱讀全文

與數學有什麼美相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:748
乙酸乙酯化學式怎麼算 瀏覽:1413
沈陽初中的數學是什麼版本的 瀏覽:1367
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:896
數學c什麼意思是什麼意思是什麼 瀏覽:1424
中考初中地理如何補 瀏覽:1314
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1404
如何回答地理是什麼 瀏覽:1038
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1495
二年級上冊數學框框怎麼填 瀏覽:1715
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1013
武大的分析化學怎麼樣 瀏覽:1257
ige電化學發光偏高怎麼辦 瀏覽:1346
學而思初中英語和語文怎麼樣 瀏覽:1670
下列哪個水飛薊素化學結構 瀏覽:1433
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1073