A. 數學符號M,Z,Q,R指的都是什麼數
數學符號中沒有M,有N,N代表自然數集;Z代表整數集;Q代表有理數集;R代表實數集;C代表復數集。
非負整數集是一種特定的集合,指全體自然數的集合,常用符號N表示。非負整數包括正整數和零。非負整數集是一個可列集。
由全體整數組成的集合叫整數集。它包括全體正整數、全體負整數和零。數學中整數集通常用Z來表示。
有理數集,即由所有有理數所構成的集合,用黑體字母Q表示。有理數集是實數集的子集。
實數集通俗地認為,通常包含所有有理數和無理數的集合就是實數集,通常用大寫字母R表示。
集合C={a+bi | a,b∈R}中的數,即形如a+bi(a,b∈R)的數叫做復數。其中i叫做虛數單位,全體復數所成的集合C叫做復數集。
(1)數學q是什麼擴展閱讀:
集合特性:
1、確定性
給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。
2、互異性
一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次[6]。
3、無序性
一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。
B. 數學中R,Z,N,Q都代表什麼意思
R:實數集合(包括有理數和無理數);Z:整數集合{…,-1,0,1,…};N表示非負整數集;Q表示有理數集。
其他表示:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Q+:正有理數集合
Q-:負有理數集合
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
(2)數學q是什麼擴展閱讀:
集合,簡稱集,是數學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創立於19世紀,關於集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義。
即集合是「確定的一堆東西」,集合里的「東西」則稱為元素。現代的集合一般被定義為:由一個或多個確定的元素所構成的整體 。
C. 數學里的Q代表什麼數集
數學里的Q代表有理數集即全體有理數組成的集合。
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素,數集指就是數的集合。
數學中一些常用的數集及其記法:
1、所有正整數組成的集合稱為正整數集,記作N*,Z+或N+。
2、所有負整數組成的集合稱為負整數集,記作Z-。
3、全體非負整數組成的集合稱為非負整數集(或自然數集),記作N。
4、全體整數組成的集合稱為整數集,記作Z。
5、全體實數組成的集合稱為實數集,記作R。
6、全體虛數組成的集合稱為虛數集,記作I。
7、全體實數和虛數組成的復數的集合稱為復數集,記作C。
(3)數學q是什麼擴展閱讀
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素,數集就是數的集合。集合的范圍比數集的范圍大,數集只是集合中的一種而已,屬於數集的一定屬於集合,但屬於集合的不一定是數集。
集合里的運算都是在共同的全集U下進行的,包括交集、並集、補集等,點集的元素是點(x,y),對應的全集是平面直角坐標系中所有的點的集合,數集的元素是數x,對應的全集是數軸上所有的點的集合。
不是同一類的元素的不同類集合不能進行交集、並集等運算,所以不能說數集和點集的交集是空集。如果改點集中的點在數集中,那麼這就是二者的交集。
若兩個集合A和B的交集為空,則說他們沒有公共元素,寫作:A∩B = ∅。例如集合 {1,2} 和 {3,4} 不相交,寫作 {1,2} ∩ {3,4} = ∅。
任何集合與空集的交集都是空集,即A∩∅=∅。更一般的,交集運算可以對多個集合同時進行。例如,集合A、B、C和D的交集為A∩B∩C∩D=A∩[B∩(C ∩D)]。交集運算滿足結合律,即A∩(B∩C)=(A∩B) ∩C。
D. 數學中的Q表示什麼數
有理數
整數用Z
自然數用N
實數用R
正整數用N+ 或N*
負整數用N-
有理數用Q
0有多種定義,這里只舉最為常見的幾種。(樓上列舉了許多是0的性質,但一般不作為定義)
一、自然數0的定義及其擴充。
1、根據皮亞諾(Peano)自然數公理體系,0就是自然數中首先出現的數。皮亞諾公理1就是:0屬於自然數集。
2、自然數集的定義也可以以1為首先出現的自然數,那麼公理1成為:1屬於自然數集。這時0並不屬於自然數集。相應地,0是作為自然數的擴充出現的。可以定義「擴大了的自然數集」,即定義0是任何兩個相等自然數的差(當然先已經定義了減法),也可以用後面代數學中0的一般定義,將0並入這個擴大了的自然數集中。
3、整數、有理數、實數、復數中的0,都來源於自然數集中的0。在數集的擴張理論中,較小的數集都是以較大數集的序對或序列的一個等價類的形式嵌入較大數集的。比如把任意兩個相同自然數的序對的等價類定義為整數(涵義就是這兩個自然數的差),其中兩個相同的自然數構成的序對的等價類就是0。
4、在皮亞諾公理中,只是抽象地定義了自然數。也可以用構造的方法構成集合論中的自然數。這樣,自然數0被等同於空集,而1就是{空集},2就是{空集,{空集}},等等。
二、一般代數理論中的0。
在一般代數結構中,如果定義了加法運算(一般加法是可交換的),那麼則定義0就是滿足集中任何元素與之相加都仍得該元素性質的元素(也就是x+0=x這一性質)。如任何一個域中都有0元素,實數域中的0也可以這樣定義。
如果一個代數結構沒有定義加法,只定義了乘法,有時也可以說滿足集中任何元素與之相乘都仍得0性質的元素(也就是0*x=0或x*0=0)。由於這里乘法沒有交換律,所以有「左0元」和「右0元」之分。如數域K上N階方陣關於乘法構成一個群,就可以說它有左、右0元。
順變提一下,布爾(Boolean)代數中0是另一種符號,遵循的又是邏輯運算的法則了。
附:皮亞諾自然數公理(也就是自然數的公理化定義)
PA1:零是個自然數.
PA2:每個自然數都有一個後繼(也是個自然數).
PA3:零不是任何自然數的後繼.
PA4:不同的自然數有不同的後繼.
PA5:(歸納公理)設由自然數組成的某個集含有零,且每當該集含有某個自然數時便也同時含有這個數的後繼,那麼該集定含有全部自然數.
參考資料:汪芳庭,數學基礎.潘承洞,潘承彪,初等數論.藍以中,高等代數簡明教程,抽象代數復明教程.范德瓦爾登,代數學
E. 數學中的Z,Q,R分別代表什麼
Z表示集合中的整數集
Q表示有理數集
R表示實數集
N表示集合中的自然數集
N+表示正整數集
拓展資料:
符號法
有些集合可以用一些特殊符號表示,比如:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Z:整數集合{…,-1,0,1,…}
Q:有理數集合
Q+:正有理數集合
Q-:負有理數集合
R:實數集合(包括有理數和無理數)
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
F. q等於什麼
數學方面:在數學集合中Q表示有理數集。
物理方面:
1、焦耳:物體(質量m)經某一過程溫度變化為△T,它吸收(或放出)的熱量,Q=cm·△T。
2、q表示熱值,公式q=Q/m(固體),q=Q/V(氣體),單位:J/kg(固體),J/m^3(氣體)。
3、q表示電荷 一個原電荷所帶電量qe=1.60217733×10-19C。
4、Q表示電量(總電荷量)。
有理數集運算:
加法的交換律:【a+b=b+a】。
加法的結合律:【a+(b+c)=(a+b)+c】。
存在加法的單位元0,使【0+a=a+0=a】。
對任意有理數a,存在一個加法逆元,記作-a,使【a+(-a)=(-a)+a=0】。
乘法的交換律:【ab=ba】。
乘法的結合律;【a·(b·c)=(a·b)·c】。
乘法的分配律:【a(b+c)=ab+ac】。
以上內容參考:網路-有理數集
G. 數學中的Q表示什麼意思
數學中的Q表示的是:有理數集,用大寫黑正體符號Q代表。
但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。
由於任何一個整數或分數都可以化為十進制循環小數,反之,每一個十進制循環小數也能化為整數或分數,因此,有理數也可以定義為十進制循環小數。
。
H. 數學中Q代表什麼
Q可以代表未知數,也可以代表有理數,
Q也可以代表amount of regular repayment made per period
Q還可以成為角度如:sinQ
I. 數學中的N、N+、Z、Q、R都是什麼意思
N是自然數集,也叫非負整數集,例如:0、1、2、3......
N+(或N*)是正整數集,例如:1、2、3......
Z是全體整數集合,例如:-2、-1、0、1、2......
Q是有理數集,R是實數集
J. 數學中的Z,Q,R分別是什麼…有哪些數
Z:在數學中代表的是整數集。
包括數字:
1、正整數,即大於0的整數如,1,2,3······直到n。
2、零,既不是正整數,也不是負整數,它是介於正整數和負整數的數。
3、負整數,即小於0的整數如,-1,-2,-3······直到-n。(n為正整數)
Q:在數學中代表的是有理數集。
包括數字:
1、正有理數,包括正整數和正分數,例如1,2,3······直到n,以及1/2,1/3······正分數。
2、負有理數,包括負整數和負分數,例如-1,-2,-3······直到-n,以及-1/2,-1/3······負分數。
3、零。
R:在數學中代表的是實數集。
包括數字:
1、有理數,由所有分數,整數組成,總能寫成整數、有限小數或無限循環小數,並且總能寫成兩整數之比。
2、無理數,實數范圍內不能表示成兩個整數之比的數。常見的無理數有:圓周長與其直徑的比值,歐拉數e,黃金比例φ等等。
(10)數學q是什麼擴展閱讀:
1、整數集Z的由來:
德國女數學家諾特在引入整數環概念的時候(整數集本身也是一個數環),她是德國人,德語中的整數叫做Zahlen,於是當時她將整數環記作Z,從那時候起整數集就用Z表示了。
2、有理數集可以用大寫黑正體符號Q代表。但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
有理數的小數部分是有限或為無限循環的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不循環的數。
3、實數集通常用黑正體字母R表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
4、有理數集與整數集的一個重要區別是,有理數集是稠密的,而整數集是密集的。將有理數依大小順序排定後,任何兩個有理數之間必定還存在其他的有理數,這就是稠密性。整數集沒有這一特性,兩個相鄰的整數之間就沒有其他的整數了。