導航:首頁 > 數字科學 > 數學分什麼數

數學分什麼數

發布時間:2022-04-28 23:56:25

Ⅰ 數學所有數的分類

數的最大集合是復數,復數集:實數、虛數
虛數分為:實部不為零的一般虛數、實部為零的純虛數;虛數沒有正負之分;
實數按符號分:正實數、零、負實數

(1)數學分什麼數擴展閱讀
自然數:即正整數,從0、1、2、3、4、5、6..
整數:包含正整數、0、負整數,.-5、-4、-3、-2、-1、0、1、2、3、4、5.
有理數,包含整數及小數(不包含無限不循環小數),通俗理解就是可以寫成分數形式的數,所有有理數都可以用分數表示.
無理數:即無限不循環小數,不可以用分數形式表示.如圓周率,根號2等.
實數:實數就是有理數和無理數的統稱
復數:復數是指能寫成如下形式的數a+bi,這里a和b是實數,i是虛數單位(即-1開方)

Ⅱ 數學中有哪些數

1.質數與合數
質數,又名素數,是指只能被1和自身整除的數。如2,3, 5, 7, 11……
合數,是指除了1與自身之外還有其他的約數,如4,除了1與4之外,它還能被2整除。
2、公因數、最大公約數和最小公倍數
公因數,又稱公約數,在兩個或兩個以上的自然數中,如果它們有相同的因數,那麼這些因數就叫做它們的公因數。任何兩個自然數都有公因數1.(除零以外)而這些公因數中最大的那個稱為這些正整數的最大公因數。
求幾個整數的最大公因數,只要把它們的所有共有的素因數連乘,所得的積就是它們的最大公因數。
3、 實數與虛數
負數開平方,在實數范圍內無解。
數學家們就把這種運算的結果叫做虛數,因為這樣的運算在實數范圍內無法解釋,所以叫虛數。
實數和虛數組成的一對數在復數范圍內看成一個數,起名為復數。
於是,實數成為特殊的復數(缺序數部分),虛數也成為特殊的復數(缺實數部分)。
虛數單位為i, i即根號負1。
3i為虛數,即根號(-3), 即3×根號(-1)
2+3i為復數,(實數部分為2,虛數部分為3i)

復數和虛數不一樣,形如a+bi的數。式中a,b 為實數,i是 一個滿足i2=-1的數,因為任何實數的平方不等於-1,所以i不是實數,而是實數以外的新的數。在復數a+bi中,a 稱為復數的實部,b稱為復數的虛部,i稱為虛數單位。當虛部等於零時,這個復數就是實數;當虛部不等於零時,這個復數稱為虛數,虛數的實部如果等於零,則稱為純虛數。由上可知,復數集包含了實數集,因而是實數集的擴張.
4、、有理數與無理數
有理數(rational number):能精確地表示為兩個整數之比的數.

如3,-98.11,5.72727272……,7/22都是有理數.

整數和通常所說的分數都是有理數.有理數還可以劃分為正有理數,0和負有理數.
無理數指無限不循環小數
非負整數集(或自然數集)記作 N 都指的那些?
N---0和自然數,如:0。1。2。3。。。
正整數集 記作 N + 都指的那些?
N+----正整數,如:1。2。3。。。。
整數集 記作 Z 都指的那些?
Z---正整數和負整數和0,如:。。。-2。-1。0。1。2。3。。。
實數集 記作 R 指的那些 ?
R---有理數和無理數
無限不循環小數和開根開不盡的數叫無理數
整數和分數統稱為有理數
數學上,有理數是兩個整數的比,通常寫作 a/b,這里 b 不為零。分數是有理數的通常表達方法,而整數是分母為1的分數,當然亦是有理數。
數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογος ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。
所有有理數的集合表示為 Q,有理數的小數部分有限或為循環。
5、 整數
整數(Integer):像-2,-1,0,1,2這樣的數稱為整數。(整數是表示物體個數的數,0表示有0個物體)整數是人類能夠掌握的最基本的數學工具。整數的全體構成整數集,整數集合是一個數環。在整數系中,自然數為0和正整數的統稱,稱0為零,稱-1、-2、-3、…、-n、… (n為整數)為負整數。正整數、零與負整數構成整數系。 一個給定的整數n可以是負數(n∈Z-),非負數(n∈Z*),零(n=0)或正數(n∈Z+).
我們以0為界限,將整數分為三大類 1.正整數,即大於0的整數如,1,2,3,…,n,… 2.0 既不是正整數,也不是負整數,他是介於正整數和負整數的數 3.負整數,即小於0的整數如,-1,-2,-3,…,-n,…
6、 奇數與偶數
奇數(英文:odd)數學術語 , 整數中,能被2整除的數是偶數,不能被2整除的數是奇數,偶數可用2k表示,奇數可用2k+1表示,這里k是整數。 奇數包括正奇數、負奇數。
關於奇數和偶數,有下面的性質: (1)奇數不會同時是偶數;兩個連續整數中必是一個奇數一個偶數。 (2)奇數跟奇數的和是偶數;偶數跟奇數的和是奇數;任意多個偶數的和是偶數。 (3)兩個奇(偶)數的差是偶數;一個偶數與一個奇數的差是奇數。 (4)若a、b為整數,則a+b與a-b有相同的奇偶性,即a+b與a-b同為奇數或同為偶數。 (5)n個奇數的乘積是奇數,n個偶數的乘積是偶數;順式中有一個是偶數,則乘積是偶數,即:A*B*C*…*偶數*X*Y=偶數,式中A、B、C、…X、Y皆為整數,公式可簡化為:奇數*偶數=偶數。 (6) 奇數的個位是1、3、5、7、9;偶數的個位是0、2、4、6、8.(0是個特殊的偶數。2002年國際數學協會規定,零為偶數.我國2004年也規定零為偶數。小學規定0為最小的偶數,但是在初中學習了負數,出現了負偶數時,0就不是最小的偶數了.) (7)奇數的平方除以8餘1
7、 基數
在數學上,基數(cardinal number)也叫勢(cardinality),指集合論中刻畫任意集合所含元素數量多少的一個概念。兩個能夠建立元素間一一對應的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一 一對應,是兩個對等的集合。此外還有語言學和軍事上的基數。
8、 浮點數
浮點數是屬於有理數中某特定子集的數的數字表示,在計算機中用以近似表示任意某個實數。具體的說,這個實數由一個整數或定點數(即尾數)乘以某個基數(計算機中通常是2)的整數次冪得到,這種表示方法類似於基數為10的科學記數法。
9、 布爾值
布爾值是 true 或 false 中的一個。動作腳本也會在適當時將值 true 和 false 轉換為 1 和 0。布爾值經常與動作腳本語句中通過比較控制腳本流的邏輯運算符一起使用。

Ⅲ 考研的數學分的什麼數一,數二,數三的是怎麼回事啊

數學一包括:高數,線性代數,概率論與數理統計
數學二包括:高數和線性代數
數學三包括:微積分,線性代數,概率論與數理統計
數學四包括:微積分,線性代數和概率論
數一數二是理工類的,數三數四是經濟類的

研究生入學考試中,數學是比較特殊的一門,它兼具專業課和公共課的雙重性質,是工學、經濟學、管理學等學科專業碩士研究生入學考試的必考科目,考查內容涉及高等數學、概率統計以及線性代數三個部分,分為四個類型,即數學一、數學二、數學三以及數學四,分別對應對數學要求不同的專業。四個不同類型的考試范圍、難度和側重點不同,例如:數學二不考概率統計,數學一以外高等數學考察內容較少,數學三和數學四對概率統計要求較高。因此,首先考生應該明確自己欲報專業對數學的要求,以便有針對性地進行復習。對於大多數需要考3門公共課的考生來說,數學相對於另外兩門是最難學也最難考的,也因此,歷年來數學在3門公共課各自的平均分中幾乎都是最低的。

大學考研所說的數學一、二、三和四
是根據考研大綱來的,具體內容可以參考每年的考研大綱
他具體描述了一、二、三和四考試內容
一般是一,考試范圍最廣,越到後面考試范圍越小
但這並不是等同於考試的難易,有時候數一並不比數四考試難多少!
工學類各專業的數學(一)、數學(二),經濟學類各專業的數學(三)、數學(四)。
金融專業考數幾,要根據具體學校來,有的數三,有的數四。

一最難,其次就是三。
一、二是理工類,一考高數、線代、和概率三門。二不考概率,高數也考得較少,復習起來相對輕松。
三、四是經濟類,他們的高數都考的比較少,叫微積分,不過偏重於概率(比一還多),四考的要少於三,不過具體區別我不大清楚。

Ⅳ 數學中數的幾種分類

常用的就數系中的那些吧,復數C分實數R和虛數、實數分有理數Q和無理數、有理數分整數Z、分數和零。
自然數和奇數、偶數等等都是特定的集合。

Ⅳ 數學上的數字都分為哪些:比如自然數、素數、合數等

最大的數字集合:復數集
復數集分為:實數集和虛數集
實數集分為:代數數集合和超越數集合
代數數集分為:有理數集和代數無理數集
代數無理數集加上超越數集合稱無理數集
有理數集分為:整數集和小數集
整數集分為:正整數集和零和負整數集
正整數集合加上零合稱自然數集或者非負整數集
正整數集分為:素數集和合數集
整數集還可以分為:奇數集和偶數集
以上實數集、有理數集也可以按正負分類

Ⅵ 數學的分類

數學的分支可以按照
「數」、「形」、「結構」、「變化」等研究性質來劃分。在這種體系下,代數(包括數論)、幾何(包括拓撲)、分析是三大基礎性分支,概率統計、計算數學、應用數學、離散數學是派生性分支,此外,還有一個數學史、數學哲學、數學教育等研究數學學科本身的分支。
1.數學教育學
2.數學史
3.數學哲學
4.純粹數學
數學基礎
數理邏輯
集合論
模型論
證明論
遞歸論
組合
組合計數
圖論
擬陣論
組合設計
代數組合
代數
范疇論
格論
半群論
群論
環論
域論
模論
線性代數
表示理論
交換代數
結合代數
李代數
其它
非結合代數
同調代數
計算代數
拓撲
點集拓撲
代數拓撲
微分拓撲
幾何拓撲
紐結論
數學分析
復分析
實分析
測度論
泛函分析
運算元理論
調和分析
傅里葉分析
微分學
積分學
多變數微積分
常微分方程
偏微分方程
數值分析

Ⅶ 數學分幾大類

數學分26大類:

1、數學史

2、數理邏輯與數學基礎:演繹邏輯學(也稱符號邏輯學),證明論(也稱元數學),遞歸論 ,模型論 ,公理集合論 ,數學基礎 ,數理邏輯與數學基礎其他學科。

3、數論:初等數論,解析數論,代數數論 ,超越數論,丟番圖逼近,數的幾何,概率數論,計算數論,數論其他學科。

4、代數學:線性代數,群論,域論,李群,李代數,Kac-Moody代數,環論(包括交換環與交換代數,結合環與結合代數,非結合環與非結合代數等),模論,格論,泛代數理論,范疇論,同調代數,代數K理論,微分代數,代數編碼理論,代數學其他學科。

5、代數幾何學

6、幾何學:幾何學基礎,歐氏幾何學,非歐幾何學(包括黎曼幾何學等),球面幾何學,向量和張量分析,仿射幾何學,射影幾何學,微分幾何學,分數維幾何,計算幾何學,幾何學其他學科。

7、拓撲學:點集拓撲學,代數拓撲學,同倫論,低維拓撲學,同調論,維數論,格上拓撲學,纖維叢論,幾何拓撲學,奇點理論,微分拓撲學,拓撲學其他學科。

8、數學分析:微分學,積分學,級數論 ,數學分析其他學科。

9、非標准分析

10、函數論:實變函數論 ,單復變函數論,多復變函數論,函數逼近論 ,調和分析 ,復流形,特殊函數論,函數論其他學科。

11、常微分方程:定性理論,穩定性理論 ,解析理論 ,常微分方程其他學科。

12、偏微分方程:橢圓型偏微分方程,雙曲型偏微分方程,拋物型偏微分方程,非線性偏微分方程 ,偏微分方程其他學科。

13、動力系統:微分動力系統,拓撲動力系統,復動力系統 ,動力系統其他學科。

14、積分方

15、泛函分析:線性運算元理論,變分法,拓撲線性空間,希爾伯特空間,函數空間,巴拿赫空間 ,運算元代數,測度與積分,廣義函數論,非線性泛函分析,泛函分析其他學科。

16、計算數學:插值法與逼近論,常微分方程數值解 ,偏微分方程數值解,積分方程數值解,數值代數,連續問題離散化方法,隨機數值實驗,誤差分析,計算數學其他學科。

17、概率論:幾何概率,概率分布,極限理論,隨機過程(包括正態過程與平穩過程、點過程等) ,馬爾可夫過程,隨機分析,鞅論,應用概率論(具體應用入有關學科),概率論其他。

18、數理統計學:抽樣理論(包括抽樣分布、抽樣調查等 ),假設檢驗 ,非參數統計,方差分析 ,相關回歸分析 ,統計推斷,貝葉斯統計(包括參數估計等),試驗設計,多元分析,統計判決理論,時間序列分析,數理統計學其他學科。

19、應用統計數學:統計質量控制 ,可靠性數學 ,保險數學,統計模擬。

20、應用統計數學其他學科

21、運籌學:線性規劃,非線性規劃,動態規劃,組合最優化 ,參數規劃,整數規劃,隨機規劃 ,排隊論,對策論,也稱博弈論,庫存論,決策論,搜索論,圖論 ,統籌論,最優化,運籌學其他學科。

22、組合數學

23、模糊數學

24、量子數學

25、應用數學(具體應用入有關學科)

26、數學其他學科

Ⅷ 數學分類有哪些

數學一般可分為初等數學和高等數學。初等數學就是高中及其以前學的數學內容,那些都是數學的皮毛;高等數學是大學開始接觸的,它是以微積分為基礎的數學研究模式,可以說微積分的發明是人類歷史上最偉大的發明,如果沒微積分的話,估計我們還生活在幾百年前。當然數學還有很多分支,比如概率和數理統計,線性代數,解析幾何,離散數學,復變函數,黎曼幾何,拓補學,還有比較新興的模糊數學(模糊數學是智能計算機的基礎)……當然還有很多,但敝人知識空間有限,只涉獵了這么點,只能幫你提供這些了。(補充一點,數學物理方程其實就是偏微分方程(組)的求解問題。它只是數學在物理上的簡單運用,我覺得應該不算是數學的一個分類)

Ⅸ 數學分為哪幾類

數學可以分為:數論、代數學、代數幾何學、幾何學、拓撲學、數學分析、非標准分析、函數論、常微分方程、偏微分方程、動力系統、積分方程、泛函分析、計算數學、概率論數理統計學、應用統計數學、應用統計數學其他學科、運籌學、組合數學 、模糊數學、量子數學、應用數學等等。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,但當時的代數學和幾何學長久以來仍處於獨立的狀態。

代數學可以說是最為人們廣泛接受的「數學」,可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。

(9)數學分什麼數擴展閱讀

相關定理

1、李善蘭恆等式:數學家李善蘭在級數求和方面的研究成果,在國際上被命名為「李善蘭恆等式」(或李氏恆等式)。

2、華氏定理:數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。

3、蘇氏錐面:數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」。

4、熊氏無窮級:數學家熊慶來關於整函數與無窮級的亞純函數的研究成果被國際數學界譽為「熊氏無窮級」。

5、陳示性類:數學家陳省身關於示性類的研究成果被國際上稱為「陳示性類」。

6、周氏坐標:數學家周煒良在代數幾何學方面的研究成果被國際數學界稱為「周氏坐標;另外還有以他命名的「周氏定理」和「周氏環」。

閱讀全文

與數學分什麼數相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:748
乙酸乙酯化學式怎麼算 瀏覽:1413
沈陽初中的數學是什麼版本的 瀏覽:1367
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:896
數學c什麼意思是什麼意思是什麼 瀏覽:1424
中考初中地理如何補 瀏覽:1314
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1404
如何回答地理是什麼 瀏覽:1038
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1495
二年級上冊數學框框怎麼填 瀏覽:1715
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1013
武大的分析化學怎麼樣 瀏覽:1257
ige電化學發光偏高怎麼辦 瀏覽:1346
學而思初中英語和語文怎麼樣 瀏覽:1670
下列哪個水飛薊素化學結構 瀏覽:1433
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1073