❶ 高等數學,求助大家
y′=f′(x²)·2x
dy=f′(x²)·2x dx
線性主部f′(x0²)·2x0 △x=f′(1)·(-2)·(-0.1)=0.1得f′(1)=1/2
emmm線性主部沒學過,臨時網路的,如果不對我也很無奈
只求到這里,你確定是求f′(-1)?
❷ dx和△x的區別是什麼
dx和△x的區別是:
1、dx是Δx的近似值,其中Δx比dx多了一個低價無窮小,即:Δx=dx+o(dx),其中o(dx)是比dx高階的無窮少,這一項非常小故可以忽略,dx≈Δx。
2、如果此處的x是自變數,那麼dx=△x,通常把自變數x的增量△x稱為自變數的微分,記作dx;如果這里的x是因變數,那麼把自變數寫作y的話,△x是變化量,dx=導數*△y。
3、dx是x的微分,Δx是x的改變數。一般兩者不等。前者是後者的線性主部。但對自變數而言,因為x對x的導數恆等於1,兩者相等。反之,兩者相等的也只有自變數。
高等數學是指相對於初等數學和中等數學而言,數學的對象及方法較為繁雜的一部分,中學的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科、財經類研究生考試的基礎科目。
相對於初等數學和中等數學而言,學的數學較難,屬於大學教程,因此常稱「高等數學」,在課本常稱「微積分」,理工科的不同專業。文史科各類專業的學生,學的數學稍微淺一些,文史科的不同專業,深淺程度又各不相同。
研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。
❸ 微積分中的主部是什麼意
是differential的縮寫 這個單詞的意思就是微分
❹ dx在數學里什麼意思
dx是對x的微分。
設函數y = f(x)在x的鄰域內有定義,x及x + Δx在此區間內。如果函數的增量Δy = f(x + Δx) - f(x)可表示為 Δy = AΔx + o(Δx)(其中A是不不隨Δx改變的常量,但A可以隨x改變),而o(Δx)是比Δx高階的無窮小。
那麼稱函數f(x)在點x是可微的,且AΔx稱作函數在點x相應於因變數增量Δy的微分,記作dy,即dy = AΔx。函數的微分是函數增量的主要部分,且是Δx的線性函數,故說函數的微分是函數增量的線性主部(△x→0)。
通常把自變數x的增量 Δx稱為自變數的微分,記作dx,即dx = Δx。於是函數y = f(x)的微分又可記作dy = f'(x)dx。函數因變數的微分與自變數的微分之商等於該函數的導數。因此,導數也叫做微商。
(4)數學主部是什麼擴展閱讀:
設函數y = f(x)在某區間內有定義,x0及x0+△x在這區間內,若函數的增量Δy = f(x0 + Δx) − f(x0)可表示為Δy = AΔx + o(Δx),其中A是不依賴於△x的常數, o(Δx)是△x的高階無窮小,則稱函數y = f(x)在點x0是可微的。
AΔx叫做函數在點x0相應於自變數增量△x的微分,記作dy,即:dy=AΔx。微分dy是自變數改變數△x的線性函數,dy與△y的差是關於△x的高階無窮小量,我們把dy稱作△y的線性主部。得出: 當△x→0時,△y≈dy。
❺ 高等數學,函數連續性
解:(1)因為在在負無窮到正無窮上連續,所以有f(0)=0
2=0^2
a=b*o解的a=2,,
又有導數相等得f』(0)=2=2*0
a=b,解的b=2,所以a=2,b=2(沒錯的)
(2)解:因為上下兩式都為無窮大,可上下求導的,最後可等價於
1,當n>m時等價於a(n-m)!x^(n-m)/bm!=0
2,當n=m時,等價於an!/bm!=a/b
3,當n<m時,則為無窮大
如果覺得好就採納吧,第一題目沒錯的
❻ 高數求極限什麼叫取主部
高數里求極限用的取大頭原則簡單說,就是當n趨於無窮大時候,只用考慮n的高次蜜,低次冪可以忽略.
❼ 高數中函數極限的主部和階數是什麼,有定義嗎
以x→0時,x∧2與x兩個無窮小為例,取兩個的商的極限,以x∧2/x=x,即趨近於0,因此x∧2是比x高階的無窮小,如果等於1,即為等價無窮小,如果是無窮大,則是低級無窮小(分母相對分子)。 希望對你有所幫助!
❽ 設lim(x->X)f(x)=∞,且x->X時,g(x)的主部是f(x)
因為lim(x->X)g(x)/f(x)=lim(x->X)[1+o(f(x))/f(x)]=1,
故在x=X的某些鄰域(比如(X-ε,X+ε),ε很小)中g(x)/f(x)不會太偏離1,比如可以|g(x)/f(x)-1|≤1/2,
那就有g(x)/f(x)≥1/2了······
所謂」極限的局部保號性「是指如下命題:
設x->a時f(x)->A, 則對任意B<A, 存在δ>0, 使得任意x∈(X-δ, X+δ), f(x)>B
那麼局部【當|x-X|<δ】保號【|f(x)-a|<ε,自然可以讓f(x)與a同號】性就出來了。
所以有 g(x)/f(x)>=1/2
❾ 關於微積分
微積分(Calculus)是研究函數的微分、積分以及有關概念和應用的數學分支。微積分是建立在實數、函數和極限的基礎上的。微積分最重要的思想就是用"微元"與"無限逼近",好像一個事物始終在變化你不好研究,但通過微元分割成一小塊一小塊,那就可以認為是常量處理,最終加起來就行。
微積分學是微分學和積分學的總稱。 它是一種數學思想,『無限細分』就是微分,『無限求和』就是積分。無限就是極限,極限的思想是微積分的基礎,它是用一種運動的思想看待問題。比如,子彈飛出槍膛的瞬間速度就是微分的概念,子彈每個瞬間所飛行的路程之和就是積分的概念。如果將整個數學比作一棵大樹,那麼初等數學是樹的根,名目繁多的數學分支是樹枝,而樹乾的主要部分就是微積分。微積分堪稱是人類智慧最偉大的成就之一。
極限和微積分的概念可以追溯到古代。到了十七世紀後半葉,牛頓和萊布尼茨完成了許多數學家都參加過准備的工作,分別獨立地建立了微積分學。他們建立微積分的出發點是直觀的無窮小量,理論基礎是不牢固的。直到十九世紀,柯西和維爾斯特拉斯建立了極限理論,康托爾等建立了嚴格的實數理論,這門學科才得以嚴密化。
微積分是與實際應用聯系著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學等多個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷發展。
客觀世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。因此在數學中引入了變數的概念後,就有可能把運動現象用數學來加以描述了。
由於函數概念的產生和運用的加深,也由於科學技術發展的需要,一門新的數學分支就繼解析幾何之後產生了,這就是微積分學。微積分學這門學科在數學發展中的地位是十分重要的,可以說它是繼歐氏幾何後,全部數學中的最大的一個創造。
微積分學的建立
從微積分成為一門學科來說,是在十七世紀,但是,微分和積分的思想在古代就已經產生了。
公元前三世紀,古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉雙曲體的體積的問題中,就隱含著近代積分學的思想。作為微分學基礎的極限理論來說,早在古代以有比較清楚的論述。比如我國的莊周所著的《莊子》一書的「天下篇」中,記有「一尺之棰,日取其半,萬世不竭」。三國時期的劉徽在他的割圓術中提到「割之彌細,所失彌小,割之又割,以至於不可割,則與圓周和體而無所失矣。」這些都是樸素的、也是很典型的極限概念。
到了十七世紀,有許多科學問題需要解決,這些問題也就成了促使微積分產生的因素。歸結起來,大約有四種主要類型的問題:第一類是研究運動的時候直接出現的,也就是求即時速度的問題。第二類問題是求曲線的切線的問題。第三類問題是求函數的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用於另一物體上的引力。
十七世紀的許多著名的數學家、天文學家、物理學家都為解決上述幾類問題作了大量的研究工作,如法國的費爾瑪、笛卡爾、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;義大利的卡瓦列利等人都提出許多很有建樹的理論。為微積分的創立做出了貢獻。
十七世紀下半葉,在前人工作的基礎上,英國大科學家ㄈ牛頓和德國數學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創立工作,雖然這只是十分初步的工作。他們的最大功績是把兩個貌似毫不相關的問題聯系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。
牛頓和萊布尼茨建立微積分的出發點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現在數學中分析學這一大分支名稱的來源。牛頓研究微積分著重於從運動學來考慮,萊布尼茨卻是側重於幾何學來考慮的。
牛頓在1671年寫了《流數法和無窮級數》,這本書直到1736年才出版,它在這本書里指出,變數是由點、線、面的連續運動產生的,否定了以前自己認為的變數是無窮小元素的靜止集合。他把連續變數叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。
德國的萊布尼茨是一個博才多學的學者,1684年,他發表了現在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用於分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一片說理也頗含糊的文章,卻有劃時代的意義。他以含有現代的微分符號和基本微分法則。1686年,萊布尼茨發表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創設的微積分符號,遠遠優於牛頓的符號,這對微積分的發展有極大的影響。現在我們使用的微積分通用符號就是當時萊布尼茨精心選用的。
微積分學的創立,極大地推動了數學的發展,過去很多初等數學束手無策的問題,運用微積分,往往迎刃而解,顯示出微積分學的非凡威力。
前面已經提到,一門科學的創立決不是某一個人的業績,他必定是經過多少人的努力後,在積累了大量成果的基礎上,最後由某個人或幾個人總結完成的。微積分也是這樣。
不幸的事,由於人們在欣賞微積分的宏偉功效之餘,在提出誰是這門學科的創立者的時候,竟然引起了一場悍然大波,造成了歐洲大陸的數學家和英國數學家的長期對立。英國數學在一個時期里閉關鎖國,囿於民族偏見,過於拘泥在牛頓的「流數術」中停步不前,因而數學發展整整落後了一百年。
其實,牛頓和萊布尼茨分別是自己獨立研究,在大體上相近的時間里先後完成的。比較特殊的是牛頓創立微積分要比萊布尼茨早10年左右,但是整是公開發表微積分這一理論,萊布尼茨卻要比牛頓發表早三年。他們的研究各有長處,也都各有短處。那時候,由於民族偏見,關於發明優先權的爭論竟從1699年始延續了一百多年。
應該指出,這是和歷史上任何一項重大理論的完成都要經歷一段時間一樣,牛頓和萊布尼茨的工作也都是很不完善的。他們在無窮和無窮小量這個問題上,其說不一,十分含糊。牛頓的無窮小量,有時候是零,有時候不是零而是有限的小量;萊布尼茨的也不能自圓其說。這些基礎方面的缺陷,最終導致了第二次數學危機的產生。
直到19世紀初,法國科學學院的科學家以柯西為首,對微積分的理論進行了認真研究,建立了極限理論,後來又經過德國數學家維爾斯特拉斯進一步的嚴格化,使極限理論成為了微積分的堅定基礎。才使微積分進一步的發展開來。
任何新興的、具有無量前途的科學成就都吸引著廣大的科學工作者。在微積分的歷史上也閃爍著這樣的一些明星:瑞士的雅科布·貝努利和他的兄弟約翰·貝努利、歐拉、法國的拉格朗日、科西……
歐氏幾何也好,上古和中世紀的代數學也好,都是一種常量數學,微積分才是真正的變數數學,是數學中的大革命。微積分是高等數學的主要分支,不只是局限在解決力學中的變速問題,它馳騁在近代和現代科學技術園地里,建立了數不清的豐功偉績。
微積分的基本內容
研究函數,從量的方面研究事物運動變化是微積分的基本方法。這種方法叫做數學分析。
本來從廣義上說,數學分析包括微積分、函數論等許多分支學科,但是現在一般已習慣於把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分。微積分的基本概念和內容包括微分學和積分學。
微分學的主要內容包括:極限理論、導數、微分等。
積分學的主要內容包括:定積分、不定積分等。
微積分是與應用聯系著發展起來的,最初牛頓應用微積分學及微分方程為了從萬有引力定律導出了開普勒行星運動三定律。此後,微積分學極大的推動了數學的發展,同時也極大的推動了天文學、力學、物理學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學各個分支中的發展。並在這些學科中有越來越廣泛的應用,特別是計算機的出現更有助於這些應用的不斷發展。
一元微分
定義: 設函數y = f(x)在某區間內有定義,x0及x0 + Δx在此區間內。如果函數的增量Δy = f(x0 + Δx) − f(x0)可表示為 Δy = AΔx0 + o(Δx0)(其中A是不依賴於Δx的常數),而o(Δx0)是比Δx高階的無窮小,那麼稱函數f(x)在點x0是可微的,且AΔx稱作函數在點x0相應於自變數增量Δx的微分,記作dy,即dy = AΔx。
通常把自變數x的增量 Δx稱為自變數的微分,記作dx,即dx = Δx。於是函數y = f(x)的微分又可記作dy = f'(x)dx。函數的微分與自變數的微分之商等於該函數的導數。因此,導數也叫做微商。
幾何意義
設Δx是曲線y = f(x)上的點M的在橫坐標上的增量,Δy是曲線在點M對應Δx在縱坐標上的增量,dy是曲線在點M的切線對應Δx在縱坐標上的增量。當|Δx|很小時,|Δy-dy|比|Δy|要小得多(高階無窮小),因此在點M附近,我們可以用切線段來近似代替曲線段。
多元微分
同理,當自變數為多個時,可得出多元微分得定義。
積分是微分的逆運算,即知道了函數的導函數,反求原函數。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。
一個函數的不定積分(亦稱原函數)指另一族函數,這一族函數的導函數恰為前一函數。
其中:[F(x) + C]' = f(x)
一個實變函數在區間[a,b]上的定積分,是一個實數。它等於該函數的一個原函數在b的值減去在a的值。
❿ 急!數學導數問題,求詳細過程
你好!
根據導數的定義,當Δx很小時
Δy≈ f'(x0)Δx
由題意Δy≈0.8,Δx=0.2
∴f'(x0) = 4