導航:首頁 > 數字科學 > 導數學什麼

導數學什麼

發布時間:2022-04-30 12:33:43

❶ 導數是什麼

導數是微積分中的重要概念。導數定義為,當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函數存在導數時,稱這個函數可導或者可微分。
可導的函數一定連續。不連續的函數一定不可導。

物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如,導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。

導數可以表示成為當函數曲線的一條割線轉變為切線時其斜率的極限. 通常, 直接求給定函數的切線的斜率是困難的, 因為我們僅僅知道切線和曲線相交的點的坐標. 相反, 我們將使用割線來近似切線. 然後當我們計算切線斜率的極限時, 我們就能獲得切線的斜率. 簡單而言, 我們需要計算如下極限.

f'(x)=\lim_{h\to 0}{f(x+h)-f(x)\over h}
參考資料:根據網路搜集

❷ 導數是用來干什麼的

導數是用來反映函數局部性質的工具。

一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也來源自於極限的四則運演算法則。

反之,已知導函數也可以倒過來求原來的函數,即不定積分。微積分基本定理表明了求原函數與積分是等價的。求導和積分是一對互逆操作,它們都是微積分學中最為基礎的概念。

(2)導數學什麼擴展閱讀:

導數的性質有:

一、單調性

若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。

二、凹凸性

可導函數的凹凸性與其導數的單調性有關。如果函數的導函數在某個區間上單調遞增,那麼這個區間上函數是向下凹的,相反則是向上凸的。

如果二階導函數存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函數是向下凹的,相反這個區間上函數是向上凸的。曲線的凹凸分界點稱為曲線的拐點。

參考資料來源:網路—導數

❸ 什麼是導數

當函數y=f(x)的自變數x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變數增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。

對於可導的函數f(x),x↦f'(x)也是一個函數,稱作f(x)的導函數(簡稱導數)。尋找已知的函數在某點的導數或其導函數的過程稱為求導。

實質上,求導就是一個求極限的過程,導數的四則運演算法則也來源於極限的四則運演算法則。反之,已知導函數也可以倒過來求原來的函數,即不定積分。

微積分基本定理說明了求原函數與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

(3)導數學什麼擴展閱讀:

導數與函數的性質:

單調性:

(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。

(2)若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。

根據微積分基本定理,對於可導的函數,有:

如果函數的導函數在某一區間內恆大於零(或恆小於零),那麼函數在這一區間內單調遞增(或單調遞減),這種區間也稱為函數的單調區間。

導函數等於零的點稱為函數的駐點,在這類點上函數可能會取得極大值或極小值(即極值可疑點)。進一步判斷則需要知道導函數在附近的符號。

對於滿足的一點,如果存在使得在之前區間上都大於等於零,而在之後區間上都小於等於零,那麼是一個極大值點,反之則為極小值點。

x變化時函數(藍色曲線)的切線變化。函數的導數值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。

凹凸性:

可導函數的凹凸性與其導數的單調性有關。如果函數的導函數在某個區間上單調遞增,那麼這個區間上函數是向下凹的,反之則是向上凸的。

如果二階導函數存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函數是向下凹的,反之這個區間上函數是向上凸的。曲線的凹凸分界點稱為曲線的拐點。

❹ 高中導數包括哪些內容

導數(Derivative)是微積分中的重要基礎概念.當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限.在一個函數存在導數時,稱這個函數可導或者可微分.可導的函數一定連續.不連續的函數一定不可導.導數實質上就是一個求極限的過程,導數的四則運演算法則來源於極限的四則運演算法則.
導數定義
[1](一)導數第一定義:設函數
y
=
f(x)
在點
x0
的某個領域內有定義,當自變數
x

x0
處有增量
△x
(
x0
+
△x
也在該鄰域內
)
時,相應地函數取得增量
△y
=
f(x0
+
△x)
-
f(x0)
;如果
△y

△x
之比當
△x→0
時極限存在,則稱函數
y
=
f(x)
在點
x0
處可導,並稱這個極限值為函數
y
=
f(x)
在點
x0
處的導數記為
f'(x0)
,即
導數第一定義
(二)導數第二定義:設函數
y
=
f(x)
在點
x0
的某個領域內有定義,當自變數
x

x0
處有變化
△x
(
x
-
x0
也在該鄰域內
)
時,相應地函數變化
△y
=
f(x)
-
f(x0)
;如果
△y

△x
之比當
△x→0
時極限存在,則稱函數
y
=
f(x)
在點
x0
處可導,並稱這個極限值為函數
y
=
f(x)
在點
x0
處的導數記為
f'(x0)
,即
導數第二定義
(三)導函數與導數:如果函數
y
=
f(x)
在開區間
I
內每一點都可導,就稱函數f(x)在區間
I
內可導.這時函數
y
=
f(x)
對於區間
I
內的每一個確定的
x
值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數
y
=
f(x)
的導函數,記作
y',f'(x),dy/dx,df(x)/dx.導函數簡稱導數.

❺ 數學中導數的實質是什麼有什麼實際意義和作用

1、導數的實質:

導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

2、幾何意義:

函數y=f(x)在x0點的導數f'(x0)的幾何意義:表示函數曲線在點P0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函數曲線在這一點上的切線斜率)。

3、作用:

導數與物理,幾何,代數關系密切:在幾何中可求切線;在代數中可求瞬時變化率;在物理中可求速度、加速度。

導數亦名紀數、微商(微分中的概念),是由速度變化問題和曲線的切線問題(矢量速度的方向)而抽象出來的數學概念,又稱變化率。

(5)導數學什麼擴展閱讀:

一、導數的計算

計算已知函數的導函數可以按照導數的定義運用變化比值的極限來計算。在實際計算中,大部分常見的解析函數都可以看作是一些簡單的函數的和、差、積、商或相互復合的結果。只要知道了這些簡單函數的導函數,那麼根據導數的求導法則,就可以推算出較為復雜的函數的導函數。

二、導數與函數的性質

1、單調性

(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。

(2)若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。

2、凹凸性

可導函數的凹凸性與其導數的單調性有關。如果函數的導函數在某個區間上單調遞增,那麼這個區間上函數是向下凹的,反之則是向上凸的。

如果二階導函數存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函數是向下凹的,反之這個區間上函數是向上凸的。曲線的凹凸分界點稱為曲線的拐點。

❻ 導數到底是什麼啊

導數(Derivative),也叫導函數值。又名微商,是微積分中的重要基礎概念。當函數y=f(x)的自變數x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變數增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。
不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
對於可導的函數f(x),xf'(x)也是一個函數,稱作f(x)的導函數(簡稱導數)。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也來源於極限的四則運演算法則。反之,已知導函數也可以倒過來求原來的函數,即不定積分。微積分基本定理說明了求原函數與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

❼ 導數的概念和意義

導數定義為:當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。
物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如,導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。
以上說的經典導數定義可以認為是反映局部歐氏空間的函數變化。
為了研究更一般的流形上的向量叢截面(比如切向量場)的變化,導數的概念被推廣為所謂的「聯絡」。
有了聯絡,人們就可以研究大范圍的幾何問題,這是微分幾何與物理中最重要的基礎概念之一。

❽ 高中數學中,導數主要有什麼概念和意義

導數(Derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限,在一個函數存在導數時,稱這個函數可導或可微分。可導的函數一定連續。不連續的函數一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則來源於極限的四則運演算法則
導數定義
(一)導數第一定義:設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有增量 x(x0+ x也在該鄰域內)時,相應地函數取得增量 y=f(x0+ 相)-f(x0);如果 y與 x之比當 x—0時極限存在,則稱函數 y=f(x)在點x0處可導,並稱這個極限值為函數 y=f(x)在點x0處的導數記為f(x0)即導數第一定義
(二)導數第二定義……

❾ 導數到底是什麼求了有什麼用嗎

因為普通的函數只能看出他的機體的值和變化趨勢,而因此,為了直接用數表示其變化趨勢,或者是遞增或者是遞減才引出導數的概念,通過導數可以求出對應的學歷,有些函數的斜率不是確定的,因此才有導數

❿ 導數是什麼學科

導數是屬於微積分的范疇。高中時所學的幾種基本初等函數及其倒數,是大學學習高等數學微積分的基礎

閱讀全文

與導數學什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:748
乙酸乙酯化學式怎麼算 瀏覽:1413
沈陽初中的數學是什麼版本的 瀏覽:1366
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:896
數學c什麼意思是什麼意思是什麼 瀏覽:1424
中考初中地理如何補 瀏覽:1314
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1404
如何回答地理是什麼 瀏覽:1038
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1495
二年級上冊數學框框怎麼填 瀏覽:1715
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1013
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1346
學而思初中英語和語文怎麼樣 瀏覽:1670
下列哪個水飛薊素化學結構 瀏覽:1433
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1073