『壹』 數學三考研高等數學同濟第六版中哪些章節不考啊
傅里葉級數還有微分方程的第五節以後的~~祝你考研成功~~
『貳』 考研數學三什麼內容不考考研數學三高等數學用看解析
數學三主要考高數、線性代數和概率與數理統計這三個方面;其中高數佔比56%、線性代數、概率和梳理統計都是佔比22%。
『叄』 考研數學三什麼內容不考
如曲率,解復雜的微分方程等內容不考。
考試內容:
1.微積分(函數、極限、連續、一元函數微積分學、多元函數微積分學、無窮級數、常微分方程與差分方程);
2.線性代數(行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型);
3.概率論與數理統計(隨機事件和概率、隨機變數及其概率分布、二維隨機變數及其概率分布、隨機變數的數字特徵、大數定律和中心極限定理、數理統計的基本概念、參數估計、假設檢驗)。
拓展資料
《考研數學三大綱》是考研數學的考試綱要,包括微積分、線性代數、概率論與數理統計。均要求理解概念,掌握表示法,會建立應用問題的函數關系。
網路-考研數學三大綱
『肆』 同濟高數第七版高數,數三不考的內容有哪些 謝謝啦
你最好可以去下10年數學的考綱,對照來看,看哪些不要考。高數上冊幾乎都要考,只有一些節不要考,具體不記得了。高數下冊就是考多元函數二重積分和無窮級數。大概就在前3章左右。
『伍』 數三高等數學是帶星號的都不考嗎
考研的數學三:
上冊的 向量什麼的不考
下冊的 三重積分 曲線積分與曲面積分,方向導數與梯度也沒有提到
上面這些都不考.沒提到的就不會考.
另外帶星號的章節是不是都不用看,帶星號的數學一都不考的.
『陸』 考研數三的高數的范圍, 要詳細的 哪些章節不需要看,
根據數三考綱來看,不需要看的是:
上冊
第三章第七節曲率 第八節方程的近似解
第四章第五節積分表的使用
第五章第五節反常積分的審斂法
第七章第八節歐拉方程 第十節常系數線性微分方程解組
下冊
第八章
第九章第七節 第九節 第十節
第十章第三節 第四節 第五節
第十一章
第十二章 第六節第七節第八節
還有幾個打星號的小章節也不用看 這里就補一一指出來了 你自己看了書的就會知道
『柒』 考研數三 高數上下冊的哪些章節不考(尤其是高數下)
高數上
第三章 微分中值定理與導數的應用
第七節 曲率
第八節 方程的近似解
第四章 不定積分
第五節 積分表的使用
第六章 定積分的應用
第三節 定積分在物理學上的應用
第七章 微分方程
第九節 歐拉方程
高數下
第八章 空間解析幾何與向量代數
第九章 多元函數微分法及其應用
第七節 方向導數與梯度
第十章 重積分
第三節 三重積分
第十一章 曲線積分與曲面積分
第六節 高斯公式 通量與散度
第七節 斯托克斯公式 環流量與旋度
第十二章 無窮級數
第六節 函數項級數的一致收斂性及一致收斂級數的基本性質
第七節 傅里葉級數
第八節 一般周期函數的傅里葉級數
這些不考,其實李永樂和陳文燈的全書結合著看就挺好的,有的內容雖然在大綱范圍內,但是基本不考,建議樓主還是去下一下今年的數學大綱,比對著復習就行了,每年大綱變化不大
『捌』 考數三 不知道高等數學同濟六版哪些章節不考
1,同濟六版里打*號的都不用看。所有關於空間解析幾何,弧微分,曲線積分,曲面積分的章節都不用看。還有一些不用看或者要求不高的都寫在大綱里了2,另外如大綱要求的「差分方程」,同濟六版里還沒有介紹,《全書》里應該會有的,只要求了解一階差分方程3,全書沒有的內容不用看4,實在不放心的自己下個2010年數學大綱看,數一和數三大綱都要下,自己對比其中的區別,凡是數一大綱里有,同濟六版里也有,但是數三大綱里沒有的,就不用看
『玖』 數學三的高數部分,考試范圍是什麼哪些內容不考
你是指考研吧,其實還是依據當年的考試大綱!
這個是去年的,今年應該變化不大(會在每年的10月左右出來)
一、微積分
一、函數、極限、連續
考試內容
函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 反函數、復合函數、隱函數、分段函數基本初等函數的性質及圖形初等函數 數列極限與函數極限的概念 函數的左極限和右極限 無窮小和無窮大的概念及關系 無窮小的基本性質及階的比較極限 四則運算 兩個重要極限 函數連續與間斷的概念 初等函數的連續性 閉區間上連續函數的性質
考試要求
1.理解函數的概念,掌握函數的表示法。深入了解函數的有界性、單調性、周期性和奇偶性。
3.理解復合函數、反函數、隱函數和分段函數的概念。
4。掌握基本初等函數的性質及其圖形,理解初等函數的概念。
5.會建立簡單應用問題中的函數關系式。
6.了解數列極限和函數極限(包括左、右極限)的概念。
7.了解無窮小的概念和基本性質,掌握無窮小的階的比較方法。了解無窮大的概念及其與無窮小的關系。
8.了解極限的性質與極限存在的兩個准則(單調有界數列有極限、夾逼定理),掌握極限四則運演算法則,會應用兩個重要極限。
9.理解函數連續性的概念(含左連續與右連續)。
10.了解連續函數的性質和初等函數的連續性,了解閉區間上連續函數的性質(有界性、最大值與最小值定理和介值定理)及其簡單應用。
二、一元函數微分學
考試內容
導數的概念 函數的可導性與連續性之間的關系 導數的四則運算 基本初等函數的導數 復合函數、反函數和隱函數的導數 高階導數 微分的概念和運演算法則 微分中值定理及其應用 洛必達(L'HoSpital)法則 函數單調性 函數的極值 函數圖形的凹凸性、拐點及漸近線 函數圖形的描繪 函數的最大值與最小值
考試要求
1。理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念)。
2.掌握基本初等函數的導數公式、導數的四則運演算法則及復合函數的求導法則;掌握反函數與隱函數求導法以及對數求導法。
3.了解高階導數的概念,會求二階、三階導數及較簡單函數的N階導數。
4.了解微分的概念,導數與微分之間的關系,以及一階微分形式的不變性:掌握微分法。
5.理解羅爾(ROl1e)定理、拉格朗日(kgrange)中值定理、柯西(oluchy)中值定理的條件和結論,掌握這三個定理的簡單應用。
6.會用洛必達法則求極限。
7.掌握函數單調性的判別方法及其應用,掌握極值、最大值和最小值的求法(含解較簡單的應用題)。
8.掌握曲線凹凸性和拐點的判別方法,以及曲線的漸近線的求法。
9.掌握函數作圖的基本步驟和方法,會作某些簡單函數的圖形
三、一元函數積分學
考試內容
原函數與不定積分的概念 不定積分的基本性質 基本積分公式 不定積分的換元 積分法和分部積分法 定積分的概念和基本性質 積分中值定理 變上限定積分定義的函數及其導數 牛頓一萊布尼茨(Newton一Leibniz)公式 定積分的換元 積分法和分部積分法廣義積分的概念和計算定積分的應用
考試要求
1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式;掌握計算不定積分的換元積分法和分部積分法。
2.了解定積分的概念和基本性質。掌握牛頓一萊布尼茨公式,以及定積分的換元積分法和分部積分法。會求變上限定積分的導數。
3.會利用定積分計算平面圖形的面積和旋轉體的體積,會利用定積分求解一些簡單的經濟應用題。
4.了解廣義積分收斂與發散的概念,掌握計算廣義積分的基本方法,了解廣義積分的收斂與發散的條件。
四、多元函數微積分學
考試內容
多元函數的概念 二元函數的幾何意義 二元函數的極限與連續性 有界閉區域上二元連續函數的性質(最大值和最小值定理)偏導數的概念與計算多元復合函數的求導法 隱函數求導法 高階偏導數全微分多元函數的極值和條件極值、最大值和最小值二重積分的概念、基本性質和計算 無界區域上簡單二重積分的計算
考試要求
1.了解多元函數的概念,了解二元函數的表示法與幾何意義
2.了解二元函數的極限與連續的直觀意義。
3.了解多元函數偏導數與全微分的概念,掌握求復合函數偏導數和全微分的方法,會用隱函數的求導法則。
4.了解多元函數極值和條件極值的概念/掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件。會求二元函數的極值。會用拉格朗日乘數法求條件極值。會求簡單多元函數的最大值和最小值,會求解一些簡單的應用題。
5.了解二重積分的概念與基本性質,掌握二重積分(直角坐標、極坐標)的計算方法。會計算無界區域上的較簡單的二重積分。
五、無窮級數
考試內容
常數項級數收斂與發散的概念 收斂級數的和的概念級數的基本性質與收斂的必要條件 幾何級數與戶級數的收斂性 正項級數收斂性的判別 任意項級數的絕對收斂與條件收斂 交錯級數萊布尼茨定理冪級數的概念 收斂半徑、收斂區問(指開區間)和收斂域冪級數的和函數冪級數在收斂區間內的基本性質簡單冪級數的和函數的求法 初等函數的冪級數展開式
考試要求
1.了解級數的收斂與發散、收斂級數的和等概念。
2.掌握級數收斂的必要條件及收斂級數的基本性質。掌握幾何級數及P 級數的收斂與發散的條件。掌握正項級數的比較判別法和達朗貝爾(比值)判別法。
3.了解任意項級數絕對收斂與條件收斂的概念,掌握交錯級數的萊布尼茨判別法,掌握絕對收斂與條件收斂的判別方法。
4.會求冪級數的收斂半徑和收斂域。
5.了解冪級數在收斂區問內的基本性質(和函數的連續性、逐項微分和逐項積分),會求一些簡單冪級數的和函數。
6·掌握(略)等冪級數展開式,並會利用這些展開式將一些簡單函數間接展成冪級數。
六、常微分方程與羨分方程
考試內容
微分方程的概念 微分方程的解、通解、初始條件和特解變數 可分離的微分方程 齊次方程一階線性方程 二階常系數齊次線性方程及簡單的非齊次線性方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數線性差分方程 微分方程與差分方程的簡單應用
考試要求
1.了解微分方程的階、通解、初始條件和特解等概念。
2.掌握變數可分離的方程、齊次方程和一階線性方程的求解方法。
3.會解二階常系數齊次線性方程和自由項為多項式、指數函數、正弦函數、餘弦函數,以及它們的和與乘積的二階常系數非齊次線性微分方程。
4.了解差分與差分方程及其通解與特解等概念。
5.掌握一階常系數線性差分方程的求解方法。
6.會應用微分方程和差分方程求解一些簡單的經濟應用問題。
『拾』 請問數三高數部分不考的章節是哪些
你在網上搜2014考研數三大綱,2015的還沒出,不過不會有太大變動,自己對照著大綱看課本找重點就好了