A. 排列組合公式誰知道,就是c幾幾的,怎麼算
大寫字母C,下標n,上標m,表示從n個元素中取出m 個元素的不同的方法數.如從5個人中選2人去開會,不同的選法有C(5,2)=10種。
C(n,m)的計算方法是C(n,m)=n!/[m!(n-m)!]=n*(n-1)*...*(n-m+1)/[1*2*...*m],如C(5,2)=[5*4]/[1*2]=10。
(1)數學c怎麼算擴展閱讀:
1772年,法國數學家范德蒙德(Vandermonde, A. - T.)以[n]p表示由n個不同的元素中每次取p個的排列數。
瑞士數學家歐拉(Euler, L.)則於1771年以 及於1778年以 表示由n個不同元素中每次取出p個元素的組合數。
1830年,英國數學家皮科克(Peacock, G)引入符號Cr表示n個元素中每次取r個的組合數。
1869年或稍早些,劍橋的古德文以符號nPr 表示由n個元素中每次取r個元素的排列數,這用法亦延用至今。按此法,nPn便相當於n!。
1872年,德國數學家埃汀肖森(Ettingshausen,B. A. von)引入了符號(np)來表示同樣的意義,這組合符號(Signs of Combinations)一直沿用至今。
1880年,鮑茨(Potts , R.)以nCr及nPr分別表示由n個元素取出r個的組合數與排列數。
1886年,惠特渥斯(Whit-worth, A. W.)用Cnr和Pnr表示同樣的意義,他還用Rnr表示可重復的組合數。
1899年,英國數學家、物理學家克里斯托爾(Chrystal,G.)以nPr,nCr分別表示由n個不同元素中每次取出r個不重復之元素的排列數與組合數,並以nHr表示相同意義下之可重復的排列數,這三種符號也通用至今。
1904年,德國數學家內托(Netto, E.)為一本網路辭典所寫的辭條中,以Arn表示上述nPr之意,以Crn表示上述nCr之意,後者亦也用符號(n r)表示。這些符號也一直用到現代。
參考資料來源:網路-排列組合
B. 數學符號c上4下8怎麼算
這是求組合問題:
8×7×6×5÷(1×2×3×4)
=1680÷24
=70
數學中C上標和下標的公式代表組合數。公式如下:
排列組合計算方法如下:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
C. 數學中概率C以及p的用法(公式也行)
1、C表示組合方法,例如有3個人甲乙丙,抽出2個人去參加活動的方法有C(3,2)=3種,分別是甲乙、甲丙、乙丙,這個不具有順序性,只有組合的方法。
2、P表示排列方法,表示一些物體按順序排列起來,總共的方法是多少.
例如 C(5,2)=(5*4)/(2*1)=10,C(7,3)=7*6*5 / 3*2*1=35
P(5,3)=5*4*3=60,P(6,2)=6*5=30
為事件A的對立事件。
推論4:若B包含A,則P(B-A)= P(B)-P(A)
推論5(廣義加法公式):
對任意兩個事件A與B,有P(A∪B)=P(A)+P(B)-P(AB)
D. 概率中的C是什麼怎麼計算
C表示組合數。
從n個不同元素中,任取m(m≤n)個元素並成的一組,叫做從n個不同元素中任取m個元素的一個組合。
從n個不同元素中任取m(m≤n)個元素的所有組合的總數,叫做從n個不同元素中任取m個元素的組合數,用符號
表示。
(4)數學c怎麼算擴展閱讀
組合與排列的區別在於:每一個組合中的各元素是沒有順序的。無論這 些元素怎樣排列,都只當作一種組合方式。所以在計算組合數的時候,只要 分步,就意味有次序。取 N 次,N 件物品的 N!種排列方式都會被當作不同 選法,該選法就重復計了 N!次。
比如 10 個球中任取三個球,取法應該是 C(10,3),但如果先從 10 個中取一個,得 C(10,1),再從 9 個中取一個 得 C(9,1),再從 8 個中取一個得 C(8,1),再相乘結果成了 P(10,3), 結果增大了 3!倍。
E. 關於數學排列組合,A什麼的C什麼的到底怎麼算舉個例子。。
A開頭的叫排列,C開頭的叫組合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
註:當且僅當兩個排列的元素完全相同,且元素的排列順序也相同,則兩個排列相同。例如,abc與abd的元素不完全相同,它們是不同的排列;又如abc與acb,雖然元素完全相同,但元素的排列順序不同,它們也是不同的排列。
F. 概率中的C是什麼怎麼計算
C表示組合數。
組合,數學的重要概念之一。從n個不同元素中每次取出m個不同元素(0≤m≤n),不管其順序合成一組,稱為從n個元素中不重復地選取m個元素的一個組合。所有這樣的組合的總數稱為組合數,這個組合數的計算公式為
(6)數學c怎麼算擴展閱讀
在重復組合中,從n個不同元素中可重復地選取m個元素。不管其順序合成一組,稱為從n個元素中取m個元素的可重復組合。當且僅當所取的元素相同,且同一元素所取的次數相同,則兩個重復組合相同。
排列組合計算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
G. 數學中c怎麼計算
組合數C(n,m)的計算公式為:
,不管其順序合成一組,稱為從 n 個元素中不重復地選取 m 個元素的一個組合。
H. 數學概率中的C多少多少怎麼算,比如C上面1下面4,C上面2下面16,C上面3下面20
c(下面是總數,上面是出現的次數)。
如:c(上面是2,下面是3)=(3*2)/(2*1)=3。上面的數規定幾個數相乘,數是從大往小。
從n個不同元素中每次取出m個不同元素(0≤m≤n),不管其順序合成一組,稱為從n個元素中不重復地選取m個元素的一個組合。所有這樣的組合的總數稱為組合數,這個組合數的計算公式為
(8)數學c怎麼算擴展閱讀
排列組合計算方法如下:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
I. 數學概率C怎麼計算
排列(有順序):mAn=m*(m-1)*.....*(m-n+1)
組合(無順序):mCn=m*(m-1)*.....*(m-n+1)/(1*2*...*n)
等可能事件:P(A)=m/n
互斥事件:P(A+B)=P(A)+P(B)
P(A·B)=0
獨立事件:P(A·B)=P(A)·P(B)
公式:C(m/n)[m在上n在下]=n×(n—1)…(n—m+1)/m
拓展資料
概率統計是研究自然界中隨機現象統計規律的數學方法,叫做概率統計,又稱數理統計方法。概率統計主要研究對象為隨機事件、隨機變數以及隨機過程。
概率統計是應用概率的理論來研究大量隨機現象的規律性;對通過科學安排的一定數量的實驗所得到的統計方法給出嚴格的理論證明;並判定各種方法應用的條件以及方法、公式、結論的可靠程度和局限性。使我們能從一組樣本來判定是否能以相當大的概率來保證某一判斷是正確的,並可以控制發生錯誤的概率。
參考資料:網路-概率統計
J. 概率運算中C是怎麼算的啊比如C等於幾
C表示組合方法的數量。不會等於幾。
比如:C(3,2),表示從3個物體中選出2個,總共的方法是3種,分別是甲乙、甲丙、乙丙(3個物體是不相同的情況下)。
A表示排列方法的數量。
比如:n個不同的物體,要取出m個(m<=n)進行排列,方法就是A(n,m)種。
也可以這樣想,排列放第一個有n種選擇,,第二個有n-1種選擇,,第三個有n-2種選擇,·····,第m個有n+1-m種選擇,所以總共的排列方法是n(n-1)(n-2)···(n+1-m),也等於A(n,m)。
,其中n表示該試驗中所有可能出現的基本結果的總數目。m表示事件A包含的試驗基本結果數。這種定義概率的方法稱為概率的古典定義。
頻率定義
隨著人們遇到問題的復雜程度的增加,等可能性逐漸暴露出它的弱點,特別是對於同一事件,可以從不同的等可能性角度算出不同的概率,從而產生了種種悖論。
另一方面,隨著經驗的積累,人們逐漸認識到,在做大量重復試驗時,隨著試驗次數的增加,一個事件出現的頻率,總在一個固定數的附近擺動,顯示一定的穩定性。R.von米澤斯把這個固定數定義為該事件的概率,這就是概率的頻率定義。從理論上講,概率的頻率定義是不夠嚴謹的。
統計定義
在一定條件下,重復做n次試驗,nA為n次試驗中事件A發生的次數,如果隨著n逐漸增大,頻率nA/n逐漸穩定在某一數值p附近,則數值p稱為事件A在該條件下發生的概率,記做P(A)=p。這個定義稱為概率的統計定義。
在歷史上,第一個對「當試驗次數n逐漸增大,頻率nA穩定在其概率p上」這一論斷給以嚴格的意義和數學證明的是雅各布·伯努利(Jacob Bernoulli)。