Ⅰ 怎樣才能把數學學好呢
本人親身試驗
如果LZ你是新高一,那就好辦。
1.其實我覺得最重要的就是自信。不管你初中怎樣,高中的數學是不一樣的,初中很死很呆。如果只是按照初中的方法,學不好高中數學,至少不會拔尖。所以,給自己信心!這樣才有動力啊。
2.有自信,那就拿出行動。在高一時,最好自學完大部分課程,不用鑽得很深,把參考書的知識提綱看看,大致掌握。然後,看教科書(現在高考題蠻多技巧都是課本上的,比如放縮法的一個公式),把書上的練習做一做,做簡單的,不需要很深。
3.在自學的同時,最最重要的是老師講的課程,講到哪裡,你就要鑽研到哪裡。若是條件可以的話,可以跟個輔導班,我之前就是這么過來的,分享一家口碑不錯的http://www.newace.com.cn/a/1.html,僅供參考。伴隨著老師的步伐,在已經自學的基礎上,開始做一些高考題,有些題一開始或許有些難度,或許有些知識點的技巧老師沒講到,但是,你要鑽研,探尋知識的本質是什麼。
4.筆記本,這個當初我沒注意到,很是後悔。筆記本記什麼,記你自己的技巧與老師的技巧(最好配上題),記錯題(不要錯一題寫一題,把錯誤分類,每一類後寫明自己錯的原因)
5.如上所做,在高二,上課會很輕松,你只要學習技巧與思維,這時開始,一題多解的訓練,一道題,盡可能想多一點方法,還可以與同學交流。
6.在高一,一開始學集合可能會很暈,這很正常,初中與高中的銜接是這樣的,你一定要給自己信心,努力鑽研,這個過渡期就很快度過的。
7.下面給出 我自己曾經遇到的問題。
a.立體幾何(血的教訓,記住啊),一開始學的是「綜合法」(是什麼你先不用管),很簡單,
是簡單的立體幾何,在高二時,又會學到「坐標法」(這個基本是萬能方法),坐標法,是萬金油,但是,你要記住,千萬不要用泛濫了。我在學習坐標法後,立體幾何題都用坐標法,不用思考,提筆就算。最後,我發現我不會用綜合法了......現在高考趨勢於綜合法,坐標法對付幾年前高考題,很快。但是,坐標法最近不好用啊,甚至用不了。綜合法,是思維,坐標法,是計算。
兩者過關,萬無一失。所以,建議你兩種方法都練,但綜合法為主,坐標法為輔。
b.圓錐曲線,通常是高考最後3題,較難,剛學不建議馬上做高考題,基礎一點要牢(一定,一定,切記切記).
c.導數, 通常較難,也是基礎要牢,導數題,通常比較活,題海戰術似乎沒什麼用(不要深陷其中),要掌握思維與技巧,才可能學好導數。
總結來說:自信(任何時候都要對自己說:我可以的),基礎(一切之源,要牢),鑽研(我曾經為了尋找一個規律,弄到凌晨3點),歸納(就是你的筆記本)
做到上面這幾點,堅持3年,高考至少135,若是加一點競賽思想,保140沒問題.
Ⅱ 怎麼可以學好數學該如何提高數學的成績
當看到孩子學習成績差的時候,其實家長都會非常擔心,也會去思考到底該怎麼讓孩子學好這些科目,那麼對於數學而言的話,我們可以用什麼方法去提高呢。
整理錯題也是非常好的一個方式,前面也說到邏輯性的問題是非常重要的,那麼我們該如何從試卷以及練習題目當中提取自己不會的內容呢。辦法就是用一個錯題本,來整理出自己的錯題,也是讓我們在復習的時候能夠針對性直接拿出錯題本去看,而不是在一張張去翻試卷。而且在數學當中我們不應該放過每一道錯題,在每一次的考試之後,老師都是會去評講試卷的,我們不能夠只是在課堂上改正,就結束了學習,認為自己掌握了。而是應該要整理出錯題,反復的去看,去思考當中的解題思維,同時也是警醒自己在下一次的時候不要犯錯。
Ⅲ 怎麼樣才能學好數學
本人親身試驗
如果LZ你是新高一,那就好辦。
1.其實我覺得最重要的就是自信。不管你初中怎樣,高中的數學是不一樣的,初中很死很呆。如果只是按照初中的方法,學不好高中數學,至少不會拔尖。所以,給自己信心!這樣才有動力啊。
2.有自信,那就拿出行動。在高一時,最好自學完大部分課程,不用鑽得很深,把參考書的知識提綱看看,大致掌握。然後,看教科書(現在高考題蠻多技巧都是課本上的,比如放縮法的一個公式),把書上的練習做一做,做簡單的,不需要很深。
3.在自學的同時,最最重要的是老師講的課程,講到哪裡,你就要鑽研到哪裡。若是條件可以的話,可以跟個輔導班,我之前就是這么過來的,分享一家口碑不錯的http://www.wpjj.cn/a/1.html,僅供參考。伴隨著老師的步伐,在已經自學的基礎上,開始做一些高考題,有些題一開始或許有些難度,或許有些知識點的技巧老師沒講到,但是,你要鑽研,探尋知識的本質是什麼。
4.筆記本,這個當初我沒注意到,很是後悔。筆記本記什麼,記你自己的技巧與老師的技巧(最好配上題),記錯題(不要錯一題寫一題,把錯誤分類,每一類後寫明自己錯的原因)
5.如上所做,在高二,上課會很輕松,你只要學習技巧與思維,這時開始,一題多解的訓練,一道題,盡可能想多一點方法,還可以與同學交流。
6.在高一,一開始學集合可能會很暈,這很正常,初中與高中的銜接是這樣的,你一定要給自己信心,努力鑽研,這個過渡期就很快度過的。
7.下面給出 我自己曾經遇到的問題。
a.立體幾何(血的教訓,記住啊),一開始學的是「綜合法」(是什麼你先不用管),很簡單,
是簡單的立體幾何,在高二時,又會學到「坐標法」(這個基本是萬能方法),坐標法,是萬金油,但是,你要記住,千萬不要用泛濫了。我在學習坐標法後,立體幾何題都用坐標法,不用思考,提筆就算。最後,我發現我不會用綜合法了......現在高考趨勢於綜合法,坐標法對付幾年前高考題,很快。但是,坐標法最近不好用啊,甚至用不了。綜合法,是思維,坐標法,是計算。
兩者過關,萬無一失。所以,建議你兩種方法都練,但綜合法為主,坐標法為輔。
b.圓錐曲線,通常是高考最後3題,較難,剛學不建議馬上做高考題,基礎一點要牢(一定,一定,切記切記).
c.導數, 通常較難,也是基礎要牢,導數題,通常比較活,題海戰術似乎沒什麼用(不要深陷其中),要掌握思維與技巧,才可能學好導數。
總結來說:自信(任何時候都要對自己說:我可以的),基礎(一切之源,要牢),鑽研(我曾經為了尋找一個規律,弄到凌晨3點),歸納(就是你的筆記本)
做到上面這幾點,堅持3年,高考至少135,若是加一點競賽思想,保140沒問題.
Ⅳ 怎麼可以學好數學提高數學學習成績
學好數學要分三個層面來說,第一,要學會學習。第二,要學會鞏固。第三,要學會提升。
學會學習
有的學生數學才考二三十分,不只是數學包括語文英語這些都只是四五十分,有時勉強及格,這種情況就不是會不會的問題而是學習態度的問題。
我們學習首先要學會的是心靜,只有心靜了我們才能去認真的思考題目的含義,問我們的問題,可是有的學生讀完題以後都不知道這個題目說的是什麼意思,讀數學題就像讀小說一樣。這種情況,先要練的是使學生的心靜下來,而不是一味的告訴學生這個題怎麼做,那個題怎麼做。經常不及格的學生或多門不及格的學生,往往問題就出在這。
學會學習,學會鞏固基礎,總結知識,能吃苦不服輸才能把數學學好。願天下學子,能把數學學得越來越好。
Ⅳ 怎麼學好數學
一、要做什麼?
首先,我們需要明確一個問題:怎樣才能夠得分?
對於數學考試而言,數學考試成績由兩層組成:「懂知識+會做題」。
所謂懂知識,即能夠將課本和筆記中的公式記憶熟練,別人提問時候自己能夠3-5秒內回答出來。有這一層積累,我們在做題時候就不會因為公式忘了或記錯了,導致做題思路卡住,不能算出題目。一般而言,期末考試60分以下的,往往是公式記憶存在比較多的問題。
而60~90分孩子,往往在「會做題」領域有一定障礙,對於這些孩子而言,他們公式一問也能回答出來,但就是做題時候不會用,導致無法得分。那麼對於他們而言,提升數學做題能力,多經歷、積累和總結不同題型與做題技巧,則是努力的方向。
三、重點已經找到,有沒有行之有效的,更具體的建議呢?
建議你從最近開始,做下面幾件事情:
(1)筆記與課本中有關三角,數列,統計概率與空間幾何平行垂直證明的定理,概念以及附加說明記憶熟練。這是我們保證做題時候自己思路的源泉。
(2)購買往年的模擬題,期末題目套卷。每天做一套試卷中的三角,數列,空間,統計概率大題。做完之後馬上對答案,將自己內容和答案匯總對照,錯誤的進行改正。這個目的是增進我們的做題技巧與經驗。
(3)不會的及時問。對於我們而言,可能我們條件看不懂,或者答案某些位置看不懂,此時如果自己能力無法應對情況下,一定要及時問同學或老師,讓自己弄懂更多的內容。
(4)持之以恆。一般而言,在最開始做這件事情時候,往往是很不習慣,甚至比較痛苦的過程。但是這是我們增進自己做題能力與技巧的重要途徑,因為只有多經歷、多總結,才能夠突破過往的自己,達到新的境界。很多時候,我們所做的選擇,並不是 「正確」和「錯誤」,而是 「正確」和「容易」。
Ⅵ 怎麼可以學好數學該如何提高自己的數學成績
家人對孩子的關注度是很高的,因為家長也想讓孩子的學習成績變得更好,但是這個年齡階段的孩子其實也是比較喜歡玩的,所以學生學習的時候可能就難以集中自己的注意力。怎麼可以學好數學呢?應該怎麼提高自己的數學成績呢?
所以大家一定要找到屬於自己的學習方法,這樣的話才能夠進一步提高自己的學習效率,而且你自己也可以詢問身邊的同學。大家也不要覺得尷尬,如果你感覺遇到了困難,那麼這個時候你也可以尋求老師的幫助。
Ⅶ 如何培養學生學好數學的基礎知識和基本技能
要重視學習過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點。
發展歷史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:mathematics或maths),其英語源自於古希臘語的μθημα(máthēma),有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦被用來指數學。