㈠ 數學中的log和lg各代表什麼意思
lg的底為10,即log10(10為下標)的簡寫;
ln的底為e,即loge(e為下標)的簡寫;
log的底可為任意非1正數。
通常,函數y=logax(a>0,a≠1)稱為對數函數,即冪(實數)為自變數、指數為因變數、基數為常數的函數稱為對數函數。
其中x為自變數,函數定義域為(0,+∞),即x>0。它實際上是指數函數的反函數,可以用x=ay表示。因此,指數函數中a的規定也適用於對數函數。
「log」是拉丁文logarithm(對數)的縮寫,讀作:[英][lɔɡ][美][lɔɡ, lɑɡ]。
(1)數學lg11等於多少擴展閱讀:
函數性質
定義域求解:對數函數y=logax 的定義域是{x 丨x>0},但如果遇到對數型復合函數的定義域的求解,除了要注意大於0以外,還應注意底數大於0且不等於1,如求函數y=logx(2x-1)的定義域,需同時滿足x>0且x≠1
和2x-1>0 ,得到x>1/2且x≠1,即其定義域為 {x 丨x>1/2且x≠1}
值域:實數集R,顯然對數函數無界;
定點:對數函數的函數圖象恆過定點(1,0);
單調性:a>1時,在定義域上為單調增函數;
0<a<1時,在定義域上為單調減函數;
奇偶性:非奇非偶函數
周期性:不是周期函數
㈡ lg1至lg10整數算數等於多少
lg1=0
lg2=0.3010
lg3=0.4771
lg4=0.6021
lg5=0.69897
lg6=0.7782
lg7=0.8451
lg8=0.9031
lg9=0.9542
lg10=1
㈢ 數學lg是什麼意思
英語名詞:logarithms
如果a^b=n,那麼log(a)(n)=b。其中,a叫做「底數」,n叫做「真數」,b叫做「以a為底的n的對數」。
log(a)(n)函數叫做對數函數。對數函數中x的定義域是x>0,零和負數沒有對數;a的定義域是a>0且a≠1。
對數是中學初等數學中的重要內容,那麼當初是誰首創「對數」這種高級運算的呢?在數學史上,一般認為對數的發明者是十六世紀末到十七世紀初的蘇格蘭數學家——納皮爾(Napier,1550-1617年)男爵。在納皮爾所處的年代,哥白尼的「太陽中心說」剛剛開始流行,這導致天文學成為當時的熱門學科。可是由於當時常量數學的局限性,天文學家們不得不花費很大的精力去計算那些繁雜的「天文數字」,因此浪費了若干年甚至畢生的寶貴時間。納皮爾也是當時的一位天文愛好者,為了簡化計算,他多年潛心研究大數字的計算技術,終於獨立發明了對數。當然,納皮爾所發明的對數,在形式上與現代數學中的對數理論並不完全一樣。在納皮爾那個時代,「指數」這個概念還尚未形成,因此納皮爾並不是像現行代數課本中那樣,通過指數來引出對數,而是通過研究直線運動得出對數概念的。那麼,當時納皮爾所發明的對數運算,是怎麼一回事呢?在那個時代,計算多位數之間的乘積,還是十分復雜的運算,因此納皮爾首先發明了一種計算特殊多位數之間乘積的方法。讓我們來看看下面這個例子:
n 0、1、2、3、 4、 5、 6、 7 、 8 、 9 、 10 、 11 、 12 、 13 、 14 、……
2^n 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……
這兩行數字之間的關系是極為明確的:第一行表示2的指數,第二行表示2的對應冪。如果我們要計算第二行中兩個數的乘積,可以通過第一行對應數字的加和來實現。比如,計算64×256的值,就可以先查詢第一行的對應數字:64對應6,256對應8;然後再把第一行中的對應數字加和起來:6+8=14;第一行中的14,對應第二行中的16384,所以有:64×256=16384。納皮爾的這種計算方法,實際上已經完全是現代數學中「對數運算」的思想了。回憶一下,我們在中學學習「運用對數簡化計算」的時候,採用的不正是這種思路嗎:計算兩個復雜數的乘積,先查《常用對數表》,找到這兩個復雜數的常用對數,再把這兩個常用對數值相加,再通過《常用對數的反對數表》查出加和值的反對數值,就是原先那兩個復雜數的乘積了。這種「化乘除為加減」,從而達到簡化計算的思路,不正是對數運算的明顯特徵嗎?經過多年的探索,納皮爾男爵於1614年出版了他的名著《奇妙的對數定律說明書》,向世人公布了他的這項發明,並且解釋了這項發明的特點。所以,納皮爾是當之無愧的「對數締造者」,理應在數學史上享有這份殊榮。偉大的導師恩格斯在他的著作《自然辯證法》中,曾經把笛卡爾的坐標、納皮爾的對數、牛頓和萊布尼茲的微積分共同稱為十七世紀的三大數學發明。法國著名的數學家、天文學家拉普拉斯(PierreSimonLaplace,1749-1827)曾說對數可以縮短計算時間,「在實效上等於把天文學家的壽命延長了許多倍」。
定義:
若a^n=b(a>0且a≠1)
則n=log(a)(b)
基本性質:
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nlog(a)(M)
推導
1、因為n=log(a)(b),代入則a^n=b,即a^(log(a)(b))=b。
2、MN=M×N
由基本性質1(換掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]
由指數的性質
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因為指數函數是單調函數,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3、與(2)類似處理
MN=M÷N
由基本性質1(換掉M和N)
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
由指數的性質
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因為指數函數是單調函數,所以
log(a)(M÷N) = log(a)(M) - log(a)(N)
4、與(2)類似處理
M^n=M^n
由基本性質1(換掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指數的性質
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因為指數函數是單調函數,所以
log(a)(M^n)=nlog(a)(M)
基本性質4推廣
log(a^n)(b^m)=m/n*[log(a)(b)]
推導如下:
由換底公式(換底公式見下面)[lnx是log(e)(x)e稱作自然對數的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n)
由基本性質4可得
log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]}
再由換底公式
log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性質及推導 完)
在實用上,常採用以10為底的對數,並將對數記號簡寫為lgb,稱為常用對數,它適用於求十進伯制整數或小數的對數。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可見只要對某一范圍的數編制出對數表,便可利用來計算其他十進制數的對數的近似值。在數學理論上一般都用以無理數e=2.7182818……為底的對數,並將記號 loge。簡寫為ln,稱為自然對數,因為自然對數函數的導數表達式特別簡潔,所以顯出了它比其他對數在理論上的優越性。歷史上,數學工作者們編制了多種不同精確度的常用對數表和自然對數表。但隨著電子技術的發展,這些數表已逐漸被現代的電子計算工具所取代
㈣ lg常數 lg1 lg0什麼的等於幾 lg10=1對嗎
lg0沒有意義。
lg10=1
lg1=0
㈤ 數學中的lg1.11等於多少
約等於0.5
㈥ 在高中數學里lg11取值是多少
lg11>lg10=1
㈦ 11等於多少
十進制的話就是11,二進制的話是3,八進制的話是9,十六進制的話是32(都是轉成十進制的哈)
㈧ lg等於多少lg是什麼意思
高中數學教材中有lgX: 以10為底X的對數
例如:lg10000=4,意思是:10的4次方=10000
這是求冪函數,到高中數學教材中可以查到具體公式及含義
㈨ 11等於多少
1、二進制:1+1=10,
2、十進制:1+1=2,
3、數學:1+1=2,
4、16進制:半斤八兩,16兩一斤等
㈩ 數學中lg31等於多少
按計算器,得lg31≈1.49136