導航:首頁 > 數字科學 > 數學證明題怎麼做

數學證明題怎麼做

發布時間:2022-05-03 02:14:42

『壹』 數學的初中證明題怎麼學好

證明題有三種思考方式

正向思維

對於一般簡單的題目,我們正向思考,輕而易舉可以做出。這里就不詳細講述了。

逆向思維

顧名思義,就是從相反的方向思考問題。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯。

同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。

例如:

可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去…

這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。

正逆結合

對於從結論很難分析出思路的題目,可以結合結論和已知條件認真的分析。

初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。

給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。

『貳』 數學證明題怎麼做

以下採用代數法來解答這個問題。
為了計算方便,不妨設BD=2,CD=4,BC=2a, AB=b,
【1】先算出a與b的關系式
根據等腰三角形性質,cosB=a/b
又,在ΔDBC中,利用餘弦定理得,cosB=(BD²+BC²-CD²)/2BD*BC=(a²-3)/2a
則,a/b=(a²-3)/2a,即:
b=2a²/(a²-3)
b-2=6/(a²-3)
【2】用a、b表達出cos∠ADE
在ΔDBC中,利用餘弦定理得,cos∠ADE=-(BD²+CD²-BC²)/2BD*CD=(a²-5)/4
【3】轉化命題,並進行證明
延長ED至F,使得DF=DA,連接AF
則∠ADE=2∠F,如果能證明∠F=∠AED,則命題得證
也就是要證明AF=AE
令∠ADE=γ
在ΔADF中,利用餘弦定理得,
AF²=2AD²-2AD²cos∠ADF=2AD²+2AD²cos∠ADE
=2(b-2)²(1+cosγ)=2*36/(a²-3)² *(1+(a²-5)/4)
=18(a²-1)/(a²-3)²
在ΔADE中,利用餘弦定理得,
AE²=AD²+DE²-2AD*DE*cos∠ADE
=(b-2)²+9-6(b-2)cosγ=(b-2)(b-2-6cosγ)+9
=6/(a²-3)[6/(a²-3)-3(a²-5)/2]+9
=18[2-(a²-3)(a²-5)/2]/(a²-3)²+9
=9[4-(a²-3)(a²-5)]/(a²-3)²+9
=9(4-a^4+8a²-15)/(a²-3)²+9
=9[(-a^4+8a²-11)/(a²-3)²+1]
=9[(a²-3)²-a^4+8a²-11]/(a²-3)²
=9[a^4-6a²+9-a^4+8a²-11]/(a²-3)²
=9(2a²-2)/(a²-3)²
=18(a²-1)/(a²-3)²
顯然,AF=AE
故,命題得證

『叄』 數學證明題有什麼技巧嗎我每次做數學試卷時間都不夠

以下就是10類幾何證明題的常見思路:

1
證明兩線段相等

1.兩全等三角形中對應邊相等。

2.同一三角形中等角對等邊。

3.等腰三角形頂角的平分線或底邊的高平分底邊。

4.平行四邊形的對邊或對角線被交點分成的兩段相等。

5.直角三角形斜邊的中點到三頂點距離相等。

6.線段垂直平分線上任意一點到線段兩段距離相等。

7.角平分線上任一點到角的兩邊距離相等。

8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。

9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。

10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。

11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。

12.兩圓的內(外)公切線的長相等。

13.等於同一線段的兩條線段相等。

2
證明兩個角相等

1.兩全等三角形的對應角相等。

2.同一三角形中等邊對等角。

3.等腰三角形中,底邊上的中線(或高)平分頂角。

4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。

5.同角(或等角)的餘角(或補角)相等。

6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。

7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。

8.相似三角形的對應角相等。

9.圓的內接四邊形的外角等於內對角。

10.等於同一角的兩個角相等。


9
證明比例式或等積式

1.利用相似三角形對應線段成比例。

2.利用內外角平分線定理。

3.平行線截線段成比例。

4.直角三角形中的比例中項定理即射影定理。

5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。

6.利用比利式或等積式化得。

10
證明四點共圓

1.對角互補的四邊形的頂點共圓。

2.外角等於內對角的四邊形內接於圓。

3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。

4.同斜邊的直角三角形的頂點共圓。

5.到頂點距離相等的各點共圓。

『肆』 數學的證明題應該怎麼做

先要搞清楚證明三角形全等的三條定理。 邊邊角 角邊角 和邊邊邊。 意思分別是: 1。邊邊角,通過證明兩個三角形的兩條邊和兩條邊的夾角相等 從而推出兩個三角形全等。 2. 角邊角,通過證明兩個三角形的兩個角和兩個角所夾的那條直線相等 可以推出兩個三角形 全等。 3.邊邊邊,通過證明兩個三角形的三條邊都是相等的,推出兩個三角形相等。 遇到不同形狀的三角形 應該具體問題具體分析,比如有兩個已知角是相等的 就考慮用角邊角來證。如果一個角的數值都不知道,這時候就肯定要用邊邊邊來證明。 反正只要弄懂證明的定理。。遇到什麼問題 把相關的條件往定理上面套,一個定理不行就換一個 很快就能證出來的。 前提是 你有認真背定理哦~不然證明題怎麼樣都學不好的。

『伍』 做初二數學證明題有什麼技巧

1、綜合法(由因導果),從已知條件出發,通過有關定義、定理、公理的應用,逐步向前推進,直到問題解決。

2、分析法(執果索因),從命題的結論考慮,推敲使其成立需要具備的條件,然後再把所需的條件看成要證的結論繼續推敲,如此逐步往上逆求,直到已知事實為止。

3、分析綜合法:將分析與綜合法合並使用,比較起來,分析法利於思考,綜合法易於表達,因此,在實際思考問題時,可合並使用,靈活處理,以利於縮短題設與結論的距離,最後達到證明目的。

(5)數學證明題怎麼做擴展閱讀:

幾何證明作為平面幾何中的一個重要問題,它有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常常可以相互轉化,如證明平行關系可轉化為證明角等或角互補的問題。

掌握構造基本圖形的方法:復雜的圖形都是由基本圖形組成的,因此要善於將復雜圖形分解成基本圖形。在更多時候需要構造基本圖形,在構造基本圖形時往往需要添加輔助線,以達到集中條件、轉化問題的目的。

『陸』 數學證明題怎麼寫

1.弄清題意 如何弄清題意呢?根據命題的定義可知,命題由條件與結論兩部分組成,因此區分命題的條件與結論至關重要,是解題成敗的關鍵.命題可以改寫成「如果………..,那麼……….」的形式,其中「如果………..」就是命題的條件,「那麼…….」就是命題的結論 2、根據題意,畫出圖形. 圖形對解決證明題,能起到直觀形象的提示,所以畫圖因盡量與題意相符合.並且把題中已知的條件,能標在圖形上的盡量標在圖形上. 3.根據題意與圖形,用數學的語言與符號寫出已知和求證. 眾所周知,命題的條件---已知,命題的結論---求證,但要特別注意的是,已知、求證必須用數學的語言和符號來表示. 4.分析已知、求證與圖形,探索證明的思路. 對於證明題,有三種思考方式:(1)正向思維.對於一般簡單的題目,我們正向思考. (2)逆向思維.運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路. (3)正逆結合.對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路. 5.根據證明的思路,用數學的語言與符號寫出證明的過程 證明過程的書寫,其實就是把證明的思路從腦袋中搬到紙張上.對數學符號與數學語言的應用要求較高,在講解時,要提醒學生任何的「因為、所以」,在書寫是都要符合公理、定理、推論或以已知條件相吻合,不能無中生有、胡說八道,要有根有據! 6.檢查證明的過程,看看是否合理、正確 任何正確的步驟,都有相應的合理性和與之相應證的公理、定理、推論,證明過程書寫完畢後,對證明過程的每一步進行檢查,是非常重要的,是防止證明過程出現遺漏的關鍵.最後,同學們在平時練習中要敢於嘗試,多分析,多總結.才能做到熟能生巧!

『柒』 做初中數學的證明題有什麼技巧

在初中數學幾何學習中,如何添加輔助線是許多同學感到頭疼的問題,許多同學常因輔助線的添加方法不當,造成解題困難。以下是常見的輔助線作法編成了一些「順口溜」 歌訣。

人人都說幾何難,難就難在輔助線。輔助線,如何添?把握定理和概念。
還要刻苦加鑽研,找出規律憑經驗。圖中有角平分線,可向兩邊作垂線。
角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。
如果遇到相交圓,不要忘作公共弦。內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。輔助線,是虛線,畫圖注意勿改變。
基本作圖很關鍵,平時掌握要熟練。解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線。

『捌』 如何做好高等數學的證明題

數學學科的特點是高度的抽象理論與嚴密的邏輯推理,要通過學習數學提高抽象思維能力,邏輯推理能力,數學運算能力以及應用數學解決實際問題的能力。任何一門數學課的內容都是由基本概念(定義)、基本理論(性質與定理)、基本運算(計算)及應用四部分組成,要學好數學就要在這四個部分上認真鑽研刻苦努力,多下功夫。

基本概念要清楚,要讀懂,要理解透徹、敘述准確,不能似是而非、一知半解。數學的推理完全靠基本概念,基本概念不清楚,很多內容就學不懂,無法掌握和運用。例如,線性代數中向量組的線性相關性、線性無關性,向量組的秩與極大無關組,矩陣的相似對角形等,初學者往往掌握不深不透,這就要通過復習與作習題的過程中逐步深入、反復思考、徹底讀懂。

基本理論是數學推理論證的核心,是由一些概念、性質與定理組成的,有些定理並不要求每位初學者都會證明,但定理的條件和結論一定要清楚,要熟悉定理並學會使用定理,有些內容是必須牢記的。例如,矩陣的初等變換是線性代數的重要內容之一。求逆方陣、求矩陣的秩,解線性方程組等都離不開矩陣的初等變換,要懂得其中的道理,為什麼可以用初等變換解決以上問題,理論依據是什麼?是作初等行變換還是列變換。又如,線性方程組解的存在定理及解的結構定理,判斷向量組線性相關與線性無關的有關定理,都是必須牢記的。在概率論的學習中,微積分知識對於理解概率統計的理論很重要。

掌握數學概念和理論並學會運用主要靠作題,在讀懂了內容後要作題,而且要作一定數量的題,才能不斷加深對內容的理解,提高解題能力,熟才能生巧,捷徑是沒有的,「不作題等於沒學數學」這是大家公認的事實。在解題過程中要不斷總結思路和方法,掌握解題規律性,通過作題提高分析問題、解決問題的能力,也就是逐步提高數學素養。我大學時期的數學老師是北大的研究生(當時正准備去美國讀數學博士),福建省當年高考的狀元,他高考數學是120分(滿分),物理99分,……他告訴我學習微積分的經驗就是作四萬道題,保證微積分通過(包括考研微積分部分)。——作題的重要性可見一般。

『玖』 數學的幾何證明題該怎麼寫。怎麼學好。

幾何證明題入門難,證明題難做,是許多學生在學習中的共識,這裡面有很多因素,有主觀的、也有客觀的,學習不得法,沒有適當的解題思路則是其中的一個重要原因。掌握證明題的一般思路、探討證題過程中的數學思維、總結證題的基本規律是求解幾何證明題的關鍵。在這里結合自己的教學經驗,談談自己的一些方法與大家一起分享。

一要審題。很多學生在把一個題目讀完後,還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取。我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置。

二要記。這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。

三要引申。難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論(就像電腦一下,你一點擊開始立刻彈出對應的菜單),然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習。

四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結論出發往回推理。看看結論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內錯角相等3.餘角、補角定理4.角平分線定義5.等腰三角形6.全等三角形的對應角等等方法。然後結合題意選出其中的一種方法,然後再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現,這時再把這些條件綜合在一起,很條理的寫出證明過程。

五要歸納總結。很多同學把一個題做出來,長長的鬆了一口氣,接下來去做其他的,這個也是不可取的,應該花上幾分鍾的時間,回過頭來找找所用的定理、公理、定義,重新審視這個題,總結這個題的解題思路,往後出現同樣類型的題該怎樣入手。

以上是常見證明題的解題思路,當然有一些的題設計的很巧妙,往往需要我們在填加輔助線,
分析已知、求證與圖形,探索證明的思路。
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對於初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。

『拾』 數學的證明提不會做怎麼辦

多看書本中的定理、基本概念,有時候是通過定義來證明的,舉一反三,把定義理解透徹。學會一步步分解,挖出隱含條件,拆開去理解問題。對於不理解的知識點可以去問老師或同學,不要放那裡自己去鑽牛角尖。

閱讀全文

與數學證明題怎麼做相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:748
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1366
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1423
中考初中地理如何補 瀏覽:1313
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1403
如何回答地理是什麼 瀏覽:1037
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1715
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1010
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1669
下列哪個水飛薊素化學結構 瀏覽:1431
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1073