Ⅰ 雞兔同籠有哪些數學家研究過這個問題都有哪些解法
雞兔同籠是中國古代的數學名題之一.大約在1500年前,《孫子算經》中就記載了這個有趣的問題.書中是這樣敘述的:「今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?」這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭,從下面數,有94隻腳.問籠中各有幾只雞和兔?
算這個有個最簡單的演算法.
(總腳數-總頭數×雞的腳數)÷(兔的腳數-雞的腳數)=兔的只數
(94-35×2)÷2=12(兔子數) 總頭數(35)-兔子數(12)=雞數(23)
讓兔子和雞同時抬起兩只腳,這樣籠子里的腳就減少了頭數×2隻,由於雞只有2隻腳,所以籠子里只剩下兔子的兩只腳,再÷2就是兔子數.
假設法
假設全是雞:2×35=70(只)
雞腳比總腳數少:94-70=24 (只)
兔:24÷(4-2)=12 (只)
雞:35-12=23(只)
假設法(通俗)
假設雞和兔子都抬起一隻腳,籠中站立的腳:
94-35=59(只)
然後再抬起一隻腳,這時候雞兩只腳都抬起來就摔倒了,只剩下用兩只腳站立的兔子,站立腳:
59-35=24(只)
兔:
24÷2=12(只)
雞:
35-12=23(只)
假設全是兔:4×35=140(只)
如果假設全是兔那麼兔腳比總數多:140-94=46(只)
雞:46÷(4-2)=23(只)
兔:35-23=12(只)
方程法
一元一次方程
設兔有x只,則雞有(35-x)只.
4x+2(35-x)=94
4x+70-2x=94
2x=94-70
2x=24
x=24÷2
x=12
35-12=23(只)
或 設雞有x只,則兔有(35-x)只.
2x+4(35-x)=94
2x+140-4x=94
2x=46
x=23
35-23=12(只)
答:兔子有12隻,雞有23隻.
註:通常設方程時,選擇腿的只數多的動物,會在套用到其他類似雞兔同籠的問題上,好算一些.
二元一次方程
設雞有x只,兔有y只.
x+y=35
2x+4y=94
(x+y=35)×2=2x+2y=70
(2x+2y=70)-(2x+4y=94)=(2y=24)
y=12
把y=12代入(x+y=35)
x+12=35
x=35-12(只)
x=23(只).
答:兔子有12隻,雞有23隻.
抬腿法
方法一
假如讓雞抬起一隻腳,兔子抬起2隻腳,還有94÷2=47(只)腳.籠子里的兔就比雞的腳數多1,這時,腳與頭的總數之差47-35=12,就是兔子的只數.
方法二
假如雞與兔子都抬起兩只腳,還剩下94-35×2=24隻腳 ,這時雞是屁股坐在地上,地上只有兔子的腳,而且每隻兔子有兩只腳在地上,所以有24÷2=12隻兔子,就有35-12=23隻雞.
方法三
我們可以先讓兔子都抬起2隻腳,那麼現在就有35×2=70隻腳,現在的腳數和原來差94-70=24隻腳,這些都是每隻兔子抬起2隻腳,一共抬起24隻腳,用24÷2得到兔子有12隻,用35-12得到雞有23隻.
Ⅱ 歷史上都有哪些數學家研究過雞兔同籠
出自於《孫子算經》,作者應是名大數學家,但絕不是孫子本人,該數學家生平不詳。
至於後來的歷史,應該都是當代人,因為這是21世紀才出現的,算經中也給出了較詳細的說法,沒有顯著的發展歷史。
望採納
Ⅲ 五個關於數學的歷史故事,像雞兔同籠的那種
數學家的遺囑
阿拉伯數學家花拉子密的遺囑,當時他的妻子正懷著他們的第一胎小孩。「如果我親愛的妻子幫我生個兒子,我的兒子將繼承三分之二的遺產,我的妻子將得三分之一;如果是生女的,我的妻子將繼承三分之二的遺產,我的女兒將得三分之一。」。
而不幸的是,在孩子出生前,這位數學家就去世了。之後,發生的事更困擾大家,他的妻子幫他生了一對龍鳳胎,而問題就發生在他的遺囑內容。
如何遵照數學家的遺囑,將遺產分給他的妻子、兒子、女兒呢?
不是洗澡堂
德國女數學家愛米·諾德,雖已獲得博士學位,但無開課「資格」,因為她需要另寫論文後,教授才會討論是否授予她講師資格。
當時,著名數學家希爾伯特十分欣賞愛米的才能,他到處奔走,要求批准她為哥廷根大學的第一名女講師,但在教授會上還是出現了爭論。
一位教授激動地說:「怎麼能讓女人當講師呢?如果讓她當講師,以後她就要成為教授,甚至進大學評議會。難道能允許一個女人進入大學最高學術機構嗎?」
另一位教授說:「當我們的戰士從戰場回到課堂,發現自己拜倒在女人腳下讀書,會作何感想呢?」
希爾伯特站起來,堅定地批駁道:「先生們,候選人的性別絕不應成為反對她當講師的理由。大學評議會畢竟不是洗澡堂!」
終生只能單身
德國傑出的自然學家亞歷山大·洪堡德在喀山拜訪俄國非歐幾何學的創建者羅巴切夫斯基時,他問數學家:「為什麼您只研究數學呢?據說您對礦物學造詣很深,您對植物學也很精通。」
什麼您只研究數學呢?據說您對礦物學造詣很深,您對植物學也很精通。」
「是的,我很喜歡植物學,」羅巴切夫斯基回答說,「將來等我結了婚,我一定搞一個溫室……」
「那您就趕快結婚吧。」
「可是恰恰與願望相反,植物學和礦物學的業余愛好使我終生只能是單身漢了。」
蝴蝶效應
氣象學家Lorenz提出一篇論文,名叫「一隻蝴蝶拍一下翅膀會不會在Taxas州引起龍卷風?」論述某系統如果初期條件差一點點,結果會很不穩定,他把這種現象戲稱做「蝴蝶效應」。就像我們投擲骰子兩次,無論我們如何刻意去投擲,兩次的物理現象和投出的點數也不一定是相同的。Lorenz為何要寫這篇論文呢?
這故事發生在1961年的某個冬天,他如往常一般在辦公室操作氣象電腦。平時,他只需要將溫度、濕度、壓力等氣象數據輸入,電腦就會依據三個內建的微分方程式,計算出下一刻可能的氣象數據,因此模擬出氣象變化圖。
這一天,Lorenz想更進一步了解某段紀錄的後續變化,他把某時刻的氣象數據重新輸入電腦,讓電腦計算出更多的後續結果。當時,電腦處理數據資料的數度不快,在結果出來之前,足夠他喝杯咖啡並和友人閑聊一陣。在一小時後,結果出來了,不過令他目瞪口呆。結果和原資訊兩相比較,初期數據還差不多,越到後期,數據差異就越大了,就像是不同的兩筆資訊。而問題並不出在電腦,問題是他輸入的數據差了0.000127,而這些微的差異卻造成天壤之別。所以長期的准確預測天氣是不可能的。
韓信點兵
韓信點兵又稱為中國剩餘定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列餘1人、5人一列餘2人、7人一列餘4人、13人一列餘6人……。劉邦茫然而不知其數。
我們先考慮下列的問題:假設兵不滿一萬,每5人一列、9人一列、13人一列、17人一列都剩3人,則兵有多少?
首先我們先求5、9、13、17之最小公倍數9945(註:因為5、9、13、17為兩兩互質的整數,故其最小公倍數為這些數的積),然後再加3,得9948(人)。
中國有一本數學古書「孫子算經」也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問物幾何?」
答曰:「二十三」
術曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩二,置三十,並之,得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十,五五數之剩一,則置二十一,七七數之剩一,則置十五,即得。」
孫子算經的作者及確實著作年代均不可考。不過根據考證,著作年代不會在晉朝之後,以這個考證來說上面這種問題的解法,中國人發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩餘定理。中國剩餘定理,在近代抽象代數學中佔有一席非常重要的地位
Ⅳ 雞兔同籠問題的來歷
這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?
解答思路是這樣的:假如砍去每隻雞、每隻兔一半的腳,則每隻雞就變成了「獨角雞」,每隻兔就變成了「雙腳兔」。這樣,(1)雞和兔的腳的總數就由94隻變成了47隻;(2)如果籠子里有一隻兔子,則腳的總數就比頭的總數多1。因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只)。顯然,雞的只數就是35-12=23(只)了。
這一思路新穎而奇特,其「砍足法」也令古今中外數學家贊嘆不已。這種思維方法叫化歸法。化歸法就是在解決問題時,先不對問題採取直接的分析,而是將題中的條件或問題進行變形,使之轉化,直到最終把它歸成某個已經解決的問題。
《孫子算經》上的解法很巧妙,它是按公式:兔數 足數-頭數來算的,具體計算是這樣的:兔數 (只),雞數=頭數-免數=35-12=23,並且書中還給出了公式的來歷:把足數除以2以後,每隻雞只剩下一足,每隻兔剩下兩足了,減去頭數,就相當於每隻雞兔再減去一隻,雞足減完了,剩下的每隻兔只有一足了,此時所剩足數恰好等於兔子頭數.
http://ke..com/view/14142.htm
Ⅳ 我國古代歷史有多少數學家對雞兔同籠進行過研究 都有
雞兔同籠問題:
雞數量=(頭×4-腳)÷(4-2),
兔數量=(腳-頭×2)÷(4-2)。
Ⅵ 請問雞兔同籠有哪些數學家研究過
數學書上有
Ⅶ 雞兔同籠有哪些數學家研究過這個問題 都有哪些解法
假設法 方程法 算術法
Ⅷ 哪些人研究過雞兔同籠
小朋友研究過,自從學習了解方程設未知數以後,基本沒人研究了,你說呢?