導航:首頁 > 數字科學 > 離散數學怎麼學

離散數學怎麼學

發布時間:2022-05-05 02:38:17

① 大學中離散數學學什麼

離散數學包含的內容很多,它很符合「離散」這個詞的表面含義,那麼我們下面來看看大學中《離散數學》需要學習哪些內容?

第四模塊是圖論,其中圖G=(V,e)是一個二進制(V,e),使得e的平方⊆ [v] ,所以E的元素是v的二元子集。為了避免符號混淆,我們總是默認為v∩ B=Ø。集合V中的元素稱為圖G的不動點(或節點或點),而集合E中的元素稱為邊(或線)。通常,作圖的方法是把一個固定點畫成一個小圓。如果相應頂點之間有一條邊,則使用一條線連接兩個小圓。如何畫這些小圓圈和連接線無關緊要。

那麼,我們會發現《離散數學》包含的模塊很多,還有高等數論、拓撲學、組合數學等等,其實他就是一個數學的綜合學科,所以想要學會他不難,想學深入學很難,因為他包含的內容太多太多了。

② 怎樣學好離散數學

如何學好離散數學
離散數學是現代數學的一個重要分支,是計算機科學中基礎理論的核心課程。離散數學以研究離散量的結構和相互間的關系為主要目標,其研究對象一般地是有限個或可數個元素,因此他充分描述了計算機科學離散性的特點。由於離散數學在計算機科學中的重要性,因此,許多大學都把它作為研究生入學考試的專業課程中的一門,或者是一門中的一部分。
作為計算機系的一門課程,離散數學有與其它課程相通相似的部分,當然也有它自身的特點,現在我們就它作為考試內容時具有的特點作一個簡要的分析。
1、定義和定理多。
離散數學是建立在大量定義上面的邏輯推理學科。因而對概念的理解是我們學習這門學科的核心。在這些概念的基礎上,特別要注意概念之間的聯系,而描述這些聯系的實體則是大量的定理和性質。
在考試中的一部分內容就是考察大家對定義和定理的識記、理解和運用。如2002年上海交通大學的試題,問什麼是相容關系。如果知道的話,很容易得分;如果不清楚,那麼無論如何也得不到分數的。這類型題目往往因其難度低而在復習中被忽視。實際上這是一種相當錯誤的認識,在研究生入學考試的專業課試題中,經常出現直接考查對某知識點的識記的題目。對於這種題目,考生應該能夠准確、全面、完整地再現此知識點。任何的模糊和遺漏,都會造成極為可惜的失分。我們建議讀者,在復習的時候,對重要知識的記憶,務必以上面提到的「准確、全面、完整」為標准來要求自己,不能達到,就說明還不過關,還要下工夫。關於這一點,在後續章節中我們仍然會強調,使之貫穿於整個離散數學的復習過程中。
離散數學的定義主要分布在集合論的關系和函數部分,還有代數系統的群、環、域、格和布爾代數中。一定要很好地識記和理解。
2、方法性強。
離散數學的證明題中,方法性是非常強的,如果知道一道題用怎樣的方法證明,很輕易就可以證出來,反之則事倍功半。所以在平常復習中,要善於總結,那麼遇到比較陌生的題也可以游刃有餘了。在本書中,我們為讀者總結了不少解題方法。讀者首先應該熟悉並且會用這些方法。同時我們還鼓勵讀者勤於思考,對於一道題,盡可能地多探討幾種解法。
3、有窮性。
由於離散數學較為「呆板」,出新題比較困難,不管什麼考試,許多題目是陳題,或者稍作變化的來的。「熟讀唐詩三百首,不會做詩也會吟。」如果拿到一本習題集,從頭到尾做過,甚至背會的話。那麼,在考場上就會發現絕大多數題見過或似曾相識。這時,要取得較好的成績也就不是太難的事情了。
本書是專門針對研究生入學考試而編寫的,適合於讀者對研究生入學考試的復習。如果還有時間的話,我們可以推薦兩本習題集。一本是左孝凌老師等編寫的《離散數學理論、分析、題解》,另一套有三本,是耿素雲老師等編寫的《離散數學習題集》。這兩套書大多數題都是相同的,只是由於某些符號和定義的不同,使得題目的設定和解法有些不同而已。
現在我們就分析一下研究生入學考試有哪些題型,以及我們應如何應付。
1、基礎題
基礎題就是考察對定義的識記,以及簡單的證明和推理。題目主要集中在數理邏輯部分和集合論部分。這些題目不需要思考,很容易上手。
這一部分的題目主要問題是要防止粗心大意和對定義記憶似是而非而丟的分數。不重視這一點的人將會在考試中吃大虧。如在主合取範式中,極大項編碼對應的指派與真值表對應的指派相反,這一點在許多的參考書里也會犯錯誤;還有是要防止沒有按照一定的方法而引起的錯誤,如我們在數理邏輯或者集合論里作等價推演,可以省略若干不重要的步驟,只要老師和考生都清楚就可以了,而在推理理論里則不能省略任何步驟,否則被認為是邏輯錯誤。
我們在學習中,還要注意融會貫通,例如,數理邏輯和集合論是相通的,因此記憶或者總結方法的時候可以綜合起來,這樣便於比較和理解。
2、定理應用題
本部分是最「死」的一部分,它主要體現了離散數學的方法性強的特點。並且這一部分佔了考試內容的大部分,我們必須在這一部分下功夫,記住了各種方法,也就拿到了離散數學的大部分分數。
下面我們就列出常用的幾種應用:
●證明等價關系:即要證明關系有自反、對稱、傳遞的性質。
●證明偏序關系:即要證明關系有自反、反對稱、傳遞的性質。(特殊關系的證明就列出來兩種,要證明剩下的幾種只需要結合定義來進行)。
●證明滿射:函數f:XY,即要證明對於任意的yY,都有xX,使得f(x)=y。
●證明入射:函數f:XY,即要證明對於任意的x1、x2X,且x1≠x2,則f(x1) ≠f(x2);或者對於任意的f(x1)=f(x2),則有x1=x2。
●證明集合等勢:即證明兩個集合中存在雙射。有三種情況:第一、證明兩個具體的集合等勢,用構造法,或者直接構造一個雙射,或者構造兩個集合相互間的入射;第二、已知某個集合的基數,如果為א,就設它和R之間存在雙射f,然後通過f的性質推出另外的雙射,因此等勢;如果為א0,則設和N之間存在雙射;第三、已知兩個集合等勢,然後再證明另外的兩個集合等勢,這時,先設已知的兩個集合存在雙射,然後根據剩下題設條件證明要證的兩個集合存在雙射。
●證明群:即要證明代數系統封閉、可結合、有幺元和逆元。(同樣,這一部分能夠作為證明題的概念更多,要結合定義把它們全部搞透徹)。
●證明子群:雖然子群的證明定理有兩個,但如果考證明子群的話,通常是第二個定理,即設<G,*>是群,S是G的非空子集,如果對於S中的任意元素a和b有a*b-1S,則<S,*>是<G,*>的子群。對於有限子群,則可考慮第一個定理。
●證明正規子群:若<G,*>是一個子群,H是G的一個子集,即要證明對於任意的aG,有aH=Ha,或者對於任意的hH,有a-1 *h*aH。這是最常見的題目中所使用的方法。
●證明格和子格:子格沒有條件,因此和證明格一樣,證明集合中任意兩個元素的最大元和最小元都在集合中。
圖論雖然方法性沒有前幾部分的強,但是也有一定的方法,如最長路徑法、構造法等等。
3、難題
難題就是考試中比較難以下手,大多考生作不出來,用來拉開分數檔次的題。那麼,遇到難題我們怎麼下手分析呢?
難題主要有以下四種,我們來逐一進行分析:
①綜合題
綜合題就是內容涵蓋若干章的問題,這樣的題大多數是在群論裡面的陪集、拉格朗日定理、正規子群、商群這一部分中。這一部分結合的內容很多,而且既復雜又難理解,是整個離散數學中的難點。
首先拉格朗日定理把群和等價關系、劃分結合在一起,又與群的階數相掛鉤(在子群中有一部分階方面的題是比較難的題,它的解法依據就在此處);然後商群將兩個群結合在一起,因為兩個群的元素是不同的,因此必須時刻概念清楚才不至於混亂;接著同餘關系把群和關系相結合,定義了一種新的關系;自然同態把正規子群和商群相聯系,也成為某些證明題的著眼處;核的定義和群同態定理給出了正規子群的另一種證明方法,因為核就是正規子群……
當然,綜合題不僅此一處,離散數學是一個融會貫通的學科,像集合論,圖論等都可能成為綜合題的命題點。
對於綜合題,我們可以從兩方面下手,首先不管題設如何,看所要證明的問題,按照定理應用的題型著眼,設出所需要的格式,然後進行進一步推演;其次可以先看題設,應用已知條件的性質定理向前推幾步,看看哪一個性質更能夠接近所問,題目也就迎刃而解了。
②例外題
例外題有兩個含義,首先是對於定理應用題而言的,對於一個概念的判定定理和性質定理不是唯一的,而定理應用題是給出的是最常出題的定理,因此有的考題可能考出一個不常用的定理。
其次例外題還有一種題型是與我們平常思維相悖的問題,如:有一些題目給出一個結論,說如果它正確的話請指出來,錯誤的話則請證明,憑做題經驗通常是要選擇證明的那條思路。其實也不妨用一些時間看看能不能指出來,從而不用證明。請看下面的例子:
③ 偏題
常常有的參考書會說某某章是非重點,不會考到之類的話,這是非常錯誤和有害的。其結果是令這些章成為讀者復習中的盲點,成為難題的又一種。這些章通常概念少,定理不多,因此題目本身不難。但由於沒有好好復習或者根本沒有復習,考試中又出了題目,故此拿不到分數則是非常令人懊喪的。所以我們建議讀者進行全面復習,除非是所報考院校明確說明不考的部分,其餘內容一律要認真復習。即使是復習時間比較少,也必須做到至少是了解了基本概念和定義。對於離散數學而言,函數一章中的基數部分和格和布爾代數一章是人們容易忽略的問題。
我們平時復習的時候,不管是什麼課程,一定不能留死角,而這些地方出的題目由於它的本身內容的局限性,又往往是非常簡單的。丟了十分可惜。
④ 錯題
專業課的題目是由較少老師出的,並不像基礎課那樣經過多方面的論證,因此出錯題也不奇怪(雖然非常非常之少),如果我們遇到了一道題目,經過我們判斷和推演得到相悖的答案,不要過分迷信題目的權威性,因為它可能是錯題。

下面講一下離散證明題的證明方法:
1、直接證明法
直接證明法是最常見的一種證明的方法,它通常用作證明某一類東西具有相同的性質,或者符合某一些性質必定是某一類東西。
直接證明法有兩種思路,第一種是從已知的條件來推出結論,即看到條件的時候,並不知道它怎麼可以推出結論,則可以先從已知條件按照定理推出一些中間的條件(這一步可能是沒有目的的,要看看從已知的條件中能夠推出些什麼),接著,選擇可以推出結論的那個條件繼續往下推演;另外一種是從結論反推回條件,即看到結論的時候,首先要反推一下,看看從哪些條件可以得出這個結論(這一步也可能是沒有目的的,因為並不知道要用到哪個條件),以此類推一直到已知的條件。通常這兩種思路是同時進行的。
2、反證法
反證法是證明那些「存在某一個例子或性質」,「不具有某一種的性質」,「僅存在唯一」等的題目。
它的方法是首先假設出所求命題的否命題,接著根據這個否命題和已知條件進行推演,直至推出與已知條件或定理相矛盾,則認為假設是不成立的,因此,命題得證。
3、構造法
證明「存在某一個例子或性質」的題目,我們可以用反證法,假設不存在這樣的例子和性質,然後推出矛盾,也可以直接構造出這么一個例子就可以了。這就是構造法,通常這樣的題目在圖論中多見。值得注意的是,有一些題目其實也是本類型的題目,只不過比較隱蔽罷了,像證明兩個集合等勢,實際上就是證明「兩個集合中存在一個雙射」,我們即可以假設不存在,用反證法,也可以直接構造出這個雙射。
4、數學歸納法
數學歸納法是證明與自然數有關的題目,而且這一類型的題目可以遞推。作這一類型題目的時候,要注意一點就是所要歸納內容的選擇。

③ 談談如何學習離散數學

學習離散數學有兩項最基本的任務:其一是通過學習離散數學,使學生了解和掌握在後續課程中要直接用到的一些數學概念和基本原理,掌握計算機中常用的科學論證方法,為後續課程的學習奠定一個良好的數學基礎;其二是在離散數學的學習過程中,培訓自學能力、抽象思維能力和邏輯推理能力,以提高專業理論水平。因此學習離散數學對於計算機、通信等專業後續課程的學習和今後從事計算機科學等工作是至關重要的。但是由於離散數學的離散性、知識的分散性和處理問題的特殊性,使部分學生在剛剛接觸離散數學時,對其中的一些概念和處理問題的方法往往感到困惑,特別是在做證明題時感到無從下手,找不到正確的解題思路。因此,對離散數學的學習方法給予適當的指導和對學習過程中遇到的一些問題分析是十分必要的。 一、認知離散數學 離散數學是計算機科學基礎理論的核心課程之一,是計算機及應用、通信等專業的一門重要的基礎課。它以研究量的結構和相互關系為主要目標,其研究對象一般是有限個或可數個元素,充分體現了計算機科學離散性的特點。學習離散數學的目的是為學習計算機、通信等專業各後續課程做好必要的知識准備,進一步提高抽象思維和邏輯推理的能力,為計算機的應用提供必要的描述工具和理論基礎。 1.定義和定理多 離散數學是建立在大量定義、定理之上的邏輯推理學科,因此對概念的理解是學習這門課程的核心。在學習這些概念的基礎上,要特別注意概念之間的聯系,而描述這些聯系的實體則是大量的定理和性質。在考試中有一部分內容是考查學生對定義和定理的識記、理解和運用,因此要真正理解離散數學中所給出的每個基本概念的真正的含義。比如,命題的定義、五個基本聯結詞、公式的主析取範式和主合取範式、三個推理規則以及反證法;集合的五種運算的定義;關系的定義和關系的四個性質;函數(映射)和幾種特殊函數(映射)的定義;圖、完全圖、簡單圖、子圖、補圖的定義;圖中簡單路、基本路的定義以及兩個圖同構的定義;樹與最小生成樹的定義。掌握和理解這些概念對於學好離散數學是至關重要的。 2. 方法性強 在離散數學的學習過程中,一定要注重和掌握離散數學處理問題的方法,在做題時,找到一個合適的解題思路和方法是極為重要的。如果知道了一道題用怎樣的方法去做或證明,就能很容易地做或證出來。反之,則事倍功半。在離散數學中,雖然各種各樣的題種類繁多,但每類題的解法均有規律可循。所以在聽課和平時的復習中,要善於總結和歸納具有規律性的內容。在平時的講課和復習中,老師會總結各類解題思路和方法。作為學生,首先應該熟悉並且會用這些方法,同時,還要勤於思考,對於一道題,進可能地多探討幾種解法。 3. 抽象性強 離散數學的特點是知識點集中,對抽象思維能力的要求較高。由於這些定義的抽象性,使初學者往往不能在腦海中直接建立起它們與現實世界中客觀事物的聯系。不管是哪本離散數學教材,都會在每一章中首先列出若干個定義和定理,接著就是這些定義和定理的直接應用,如果沒有較好的抽象思維能力,學習離散數學確實具有一定的困難。因此,在離散數學的學習中,要注重抽象思維能力、邏輯推理能力的培養和訓練,這種能力的培養對今後從事各種工作都是極其重要的。 在學習離散數學中所遇到的這些困難,可以通過多學、多看、認真分析講課中所給出的典型例題的解題過程,再加上多練,從而逐步得到解決。在此特別強調一點:深入地理解和掌握離散數學的基本概念、基本定理和結論,是學好離散數學的重要前提之一。所以,同學們要准確、全面、完整地記憶和理解所有這些基本定義和定理。 4. 內在聯系性 離散數學的三大體系雖然來自於不同的學科,但是這三大體系前後貫通,形成一個有機的整體。通過認真的分析可尋找出三大部分之間知識的內在聯系性和規律性。如:集合論、函數、關系和圖論,其解題思路和證明方法均有相同或相似之處。 二、認知解題規范 一般來說,離散數學的考試要求分為:了解、理解和掌握。了解是能正確判別有關概念和方法;理解是能正確表達有關概念和方法的含義;掌握是在理解的基礎上加以靈活應用。為了考核學生對這三部分的理解和掌握的程度,試題類型一般可分為:判斷題、填空題、選擇題、計算題和證明題。判斷題、填空題、選擇題主要涉及基本概念、基本理論、重要性質和結論、公式及其簡單計算;計算題主要考核學生的基本運用技能和速度,要求寫出完整的計算過程和步驟;證明題主要考查應用概念、性質、定理及重要結論進行邏輯推理的能力,要求寫出嚴格的推理和論證過程。 學習離散數學的最大困難是它的抽象性和邏輯推理的嚴密性。在離散數學中,假設讓你解一道題或證明一個命題,你應首先讀懂題意,然後尋找解題或證明的思路和方法,當你相信已找到了解題或證明的思路和方法,你必須把它嚴格地寫出來。一個寫得很好的解題過程或證明是一系列的陳述,其中每一條陳述都是前面的陳述經過簡單的推理而得到的。仔細地寫解題過程或證明是很重要的,既能讓讀者理解它,又能保證解題過程或證明准確無誤。一個好的解題過程或證明應該是條理清楚、論據充分、表述簡潔的。針對這一要求,在講課中老師會提供大量的典型例題供同學們參考和學習。 通過離散數學的學習和訓練,能使同學們學會在離散數學中處理問題的一般性的規律和方法,一旦掌握了離散數學中這種處理問題的思想方法,學習和掌握離散數學的知識就不再是一件難事了。

④ 離散數學難學嗎

不難。

相比於數學分析這種課,離散數學更講道理。比如數理邏輯,它不會默認你會這會那,不會用以前沒講過的東西作為推理的前提,每一步推導都是有理有據的。個人認為學數學就應該這樣學,得有一個體系,從公理出發,再證定理,最後運用定理解決問題,整個體系都是由幾條公理推出來的。

簡介

離散數學是傳統的邏輯學,集合論(包括函數),數論基礎,演算法設計,組合分析,離散概率,關系理論,圖論與樹,抽象代數(包括代數系統,群、環、域等),布爾代數,計算模型(語言與自動機)等匯集起來的一門綜合學科。離散數學的應用遍及現代科學技術的諸多領域。

⑤ l應如何學好離散數學

離散數學是計算機專業的基礎課程,也是大多數同學認為比較難學的課程之一。如何學好這門課程,關鍵在於抓住基本概念的理解與應用。雖然該課程涉及的基本概念比較多,但並不代表同學們必須背住它們的完整定義,而是通過上課所舉的例題去理解這些概念,包括相應問題的證明和解決方法與思路,在課程講解和布置的練習中都體現出來了,希望同學們在做練習的過程中能真正理解、掌握相關的概念、總結解題方法,進而做到靈活應用。

⑥ 怎麼學離散數學

離散數學跟集合,邏輯推理,還有語文的閱讀理解能力有關,當然,跟數學也有關,不過不用擔心沒學高等數學。
離散數學里的很多概念性的東西是最不好理解的,要是把那些概念的東西弄懂,再做點例題就行了,總之,離散數學最難的就是理解方面!

⑦ 怎麼學離散數學

集中精神好好的聽課。回去後認真的將課上將過的東西再看一遍,最好將講過的那節課的書上的 所有文字都仔細閱讀一遍,然後做課後的習題,多練,全部做完再對答案,然後找出自己沒有理解的問題 做到弄懂 堅持 堅持 直到學完為止。其實跟其他學科都一樣,集中精神(保證效率)+恆心 一定能學好 祝你學好離散數學~~

⑧ 離散數學都有哪些內容

《離散數學|01離散數學 北京大學134講》網路網盤免費資源下載

鏈接: https://pan..com/s/1MiKBUr-vQyFS6fX7opTOPg

?pwd=422e 提取碼: 422e

離散數學|01離散數學 北京大學 134講|免費--離散數學學習指導與習題解析_屈婉玲_耿素雲_張立昂.pdf|《離散數學教程》-+屈婉玲_耿素雲_王捍貧.pdf|0134-KL的可靠性與和諧性.flv|0133-KL的解釋與賦值 (VI).flv|0132-KL的解釋與賦值 (V).flv|0131-KL的解釋與賦值 (IV).flv|0130-KL的解釋與賦值 (III).flv|0129-KL的解釋與賦值 (II).flv|0128-KL的解釋與賦值 (I).flv|0127-NL與KL的等價性.flv|0126-一階謂詞演算的形式系統KL (II).flv|0125-一階謂詞演算的形式系統KL (I).flv|0124-一階謂詞演算的自然推演形式系統NL (VI).flv


⑨ 離散數學學什麼啊

離散數學被分成三門課程進行教學,即集合論與圖論、代數結構與組合數學、數理邏輯。教學方式以課堂講授為主, 課後有書面作業、通過學校網路教學平台發布課件並進行師生交流。

集合論部分:集合及其運算、二元關系與函數、自然數及自然數集、集合的基數。圖論部分:圖的基本概念、歐拉圖與哈密頓圖、樹、圖的矩陣表示、平面圖、圖著色、支配集、覆蓋集、獨立集與匹配、帶權圖及其應用。

代數結構部分:代數系統的基本概念、半群與獨異點、群、環與域、格與布爾代數。組合數學部分:組合存在性定理、基本的計數公式、組合計數方法、組合計數定理。數理邏輯部分:命題邏輯、一階謂詞演算、消解原理。

離散數學的應用:

離散數學也可以說是計算機科學的基礎核心學科,在離散數學中的有一個著名的典型例子-四色定理又稱四色猜想,這是世界近代三大數學難題之一,它是在1852年,由英國的一名繪圖員弗南西斯·格思里提出的,他在進行地圖著色時,發現了一個現象,「每幅地圖都可以僅用四種顏色著色,並且共同邊界的國家都可以被著上不同的顏色」。

那麼這能否從數學上進行證明呢?100多年後的1976年,肯尼斯·阿佩爾(Kenneth Appel)和沃爾夫岡·哈肯(Wolfgang Haken)使用計算機輔助計算,用了1200個小時和100億次的判斷,終於證明了四色定理,轟動世界,這就是離散數學與計算機科學相互協作的結果。

以上內容從參考:網路-離散數學

⑩ 離散數學,主要學習哪些知識

離散數學是數學的幾個分支的總稱,以研究離散量的結構和相互間的關系為主要目標,其研究對象一般地是有限個或可數無窮個元素;因此它充分描述了計算機科學離散性的特點.內容包含:數理邏輯、集合論、代數結構、圖論、組合學、數論等.《離散數學》課程簡介 離散數學是計算機專業的一門重要基礎課.它所研究的對象是離散數量關系和離散結構數學結構模型.由於數字電子計算機是一個離散結構,它只能處理離散的或離散化了的數量關系,因此,無論計算機科學本身,還是與計算機科學及其應用密切相關的現代科學研究領域,都面臨著如何對離散結構建立相應的數學模型;又如何將已用連續數量關系建立起來的數學模型離散化,從而可由計算機加以處理.離散數學課程主要介紹離散數學的各個分支的基本概念、基本理論和基本方法.這些概念、理論以及方法大量地應用在數字電路、編譯原理、數據結構、操作系統、資料庫系統、演算法的分析與設計、人工智慧、計算機網路等專業課程中;同時,該課程所提供的訓練十分有益於學生概括抽象能力、邏輯思維能力、歸納構造能力的提高,十分有益於學生嚴謹、完整、規范的科學態度的培養.

離散數學主要包括四個方面邏輯學集合論,代數結構,圖論,直接用來解決一些實際的問題的,比較少,因為它是一門計算機專業的理論基礎課,解決實際問題,你看哪些方面的問題了,
下面我舉一些例子:
1 數據結構,這是計算機專業的一門重量級課程,而離散數學里裡面的圖論,就是數據結構裡面圖和樹的理論基礎!像一些經典的演算法,在數據結構里會學到,其實,它們在圖論里就被研究得很透!
2.關系資料庫,不用說,它的理論基礎----關系代數,就是離散數學的一個分支!
3.在計算機網路原理裡面,有一些路由選擇演算法之類 的,像最短路徑演算法等,都是離散數學里圖論的應用,都是一些經典的演算法!
4.更深層次的,像人工智慧等學科,都是以離散數學做為理論基礎的,
所以,離散數學是計算機的一個理論基礎,
至於你在編程中解決的問題,那應該是數據結構和演算法的應用,因為這門課就是離散數學的理論,加上在計算機上的存儲以及操作實現的~~

閱讀全文

與離散數學怎麼學相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:747
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1366
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1423
中考初中地理如何補 瀏覽:1313
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1403
如何回答地理是什麼 瀏覽:1037
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1714
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1008
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1669
下列哪個水飛薊素化學結構 瀏覽:1431
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1073