1. 數學七大能力包括哪些
數學七大能力包括:抽象概括能力、空間想像能力、推理論證能力、運算求解能力、數據處理能力、應用意識、創新意識
具體釋義:
1、抽象概括能力
抽象是指舍棄事物非本質的屬性,揭示其本質屬性:概括是指把僅僅屬於某一類對象的共同屬性區分出來的思維過程。抽象和概括是相互聯系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎上得出某種觀點或某個結論。
抽象概括能力是對具體的、生動的實例,在抽象概括的過程中,發現研究對象的本質;從給定的大量信息材料中概括出一些結論,並能將其應用於解決問題或作出新的判斷。
2、空間想像能力
能根據條件作出正確的圖形,根據圖形想像出直觀形象;能正確地分析出圖形中基本元素及其相互關系;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地解釋揭示問題的本質。
空間想像能力是對空間形式的觀察、分析、抽象的能力,主要表現為識圖、畫圖和對圖像的想像能力。識圖是指觀察研究所給圖形中幾何元素之間的相互關系。
畫圖是指將文字語言和符號語言轉化為圖形語言 以及對圖形添加輔助圖形或對圖形進行各種變換。對圖形的想像主要包括有圖想圖和無圖想圖兩種,是空間想像能力高層次的標志。
3、推理論證能力
推理是思維的基本形式之一,它由前提和結論兩部分組成,論證是由已有的正確的前提到被論證的結論的一連串的推理過程,推理既包括演繹推理,也包括合情推理:論證方法及包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法。一般運用和情推理進行猜想,再運用演繹推理進行證明。
中學數學的推理論證能力是根據已知的事實和已獲得的正確數學命題,論證某一數學命題真實性的初步的推理能力。
4、運算求解能力
會根據法則、公式進行正確運算、變形和數據處理,能根據問題的條件尋找與設計合理、簡捷的運輸途徑,能根據要求對數據進行估計和近似運算。
運算求解能力是思維能力和運算技能的結合。運算包括對數學的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等。
運算能力包括分析運算條件、探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調整運算的能力。
5、數據處理能力
會收集、整理、分析數據,能從大量數據中抽取對研究問題有用的信息,並作出判斷。數據處理能力主要依據統計案例中的方法對數據進行整理、分析,並解決給定的實際問題。
6、應用意識
能綜合應用所學數學知識、思想和方法解決問題,包括解決在相關學科、生產、生活中簡單的數學問題;能理解對問題陳述的材料,並對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數學問題。
能應用相關的數學方法解決問題進而加以驗證,並能用數學語言正確地表達和說明。 應用的主要過程是依據現實生活背景,提煉相關的數量關系,將現實問題轉化為數學問題,構造數學模型,並加以解決。
7、創新意識
能發現問題、提出問題,綜合與靈活地應用所學的數學知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考,探究和研究,提出解決問題的思路,創造性地解決問題。
創新意識是理性思維的高層次表現,對數學問題的」觀察、猜測、抽象、概括、證明」,是發現問題和解決問題的重要途徑,對數學知識的遷移、組合、融會的程度越高,顯示出的創新意識越強。
(1)小學生的數學能力有哪些擴展閱讀
數學思維與數學思維能力的培養:
1、數學思維概述數學思維:
指在數學活動中的思維,是人腦和數學對象(空間形式、數量關系、結構關系)交互作用並按照一定思維規律認識數學內容的內在理性活動。它既具有思維的一般性質,又有自己的特性。最主要的特性表現在其思維的材料和結果都是數學內容。
2、數學思維的分類:
集中思維與發散思維:集中思維是朝著一個目標、遵循單一的模式,求出歸一答案的思維,又稱為求同思維;發散思維則表現在解決問題時,能根據已提供的條件,利用已有的知識經驗,從多個方向、不同途徑去探索思考,以尋求新的解決問題和途徑和方法,發散思維又稱為求異思維。
再造性思維與創造性思維:再造性思維是指原有的經驗和已經掌握的解題方法、策略,在燈似的情境中直接解決問題的思維方式。創造性思維是指在強烈的創新意識的指導下,指導頭腦中已有的信息重新加工,產生具有進步意義的新設想、新方法的思維。
3、數學思維的一般方法:
觀察與實驗: 觀察:是受思維影響的,有目的、有計劃地通過視覺器官去認識事物、狀態及上線關系的一種主動活動。觀察是思維的窗口。實驗:是有目的、有控制地創設一些有利觀察對象,並對其衽觀察和研究的活動方式。
4、初步邏輯思維能力及其培養:
邏輯思維是數學思維的核心。邏輯思維是一種確定的、前後一貫的、有條有理的、有根有據的思維。 概念明確:概念是反映客觀事物本質屬性的一種思維方式。判斷准確:判斷是對某個事物的性質,現象作出肯定或否定的思維方式。
數學判斷是對數量關系和空間形式有所肯定或否定的一咱方式。表達數學判斷的語句又稱數學命題。判斷是由主概念、謂概念和聯系詞三部分組成。 推理符合邏輯:推理是由一個或幾個已知的判斷推出一個新判斷的形式。 推理分歸納推理、演繹推理和類比推理三種。
歸納推理(從特殊到一般);演繹推理(從一般到特殊);類比推理(從特殊到特殊)培養初步邏輯思維能力的基本途徑: 要挖掘教材中的智力因素,把培養思維能力貫穿於教學的全過程。要給學生提供足夠的材料。
要順著學生的思維,重視學習過程。 要重視數學語言的表述。初步形象思維能力及其培養形象思維:是依託對形象材料的意會,從而對事物作出有關理解的思維。 形象思維的基本形式是表象、直感和想像。
2. 小學數學要培養學生哪些能力
小學數學怎麼樣學?隨著小學數學教材的不斷更新,內容不再是簡單的加減乘除算數題,而是將許多的生活中運算加到小學的知識中,這樣一來也在不同程度上使小學數學的成績加大了難度.那小學數學怎麼樣學才有效?學生們在學習過程中怎樣掌握方法才能學好小學數學?
以上九點是有關小學數學怎麼樣學才有效,提出相關的方法.希望能給你帶來借鑒和參考的價值,重要的是讓孩子通過正確的方法提高成績.
3. 小學生的基本數學素養包括哪些
小學生的數學素養包括數感、符號意識、空間觀念、統計觀念、數學應用意識五種數學意識,數學思維、數學理解、數學交流、解決問題四種數學能力以及數學價值觀的發展。
數學素養是一種綜合素質,它主要表現在觀念、能力、語言、思維、心理等方面。包括數學意識、解決問題、數學推理、信息交流、數學心理素質五個部分。
拓展資料:
何謂數學素養?數學素養是學生以先天遺傳因素為基體,在從事數學學習與應用活動的過程中,通過主體自身的不斷認識和實踐的影響下,使數學文化知識和數學能力在主體發展中內化,逐漸形成和發展起來的「數學化」思維意識與「數學化」地觀察世界、處理和解決問題的能力。
通俗說,一個人的數學素養好,與說一個人有數學頭腦的意思差不多,歸根到底是指他從數學的角度來思考問題。一個具備數學素養的人,不僅僅表現在數學考試中能解題,還應在日常生活中,時時處處表現出是個學過數學的人,它是在長期的數學學習中逐步內化而成的。
小學生應具備的數學素養:
1、從觀念層面考慮,應具備自覺的定量、定量化數學意識。
數學意識是指用數學的觀點和態度去觀察解釋和表示事物的數量關系、空間形式和數據信息,以形成量化意識和良好數感。
定量化數學意識:指人們從實際中提煉數學問題,抽象化為數學模型,用數學計算求出此模型的解或近似解,然後回到現實中進行檢驗,必要時修改模型使之更切合實際,最後編制解題的軟體包,以便得到更廣泛的方便的應用。
2、從能力層面考慮,應具備問題解決的數學素養。數學源於於現實,寓於現實,並用於現實。數學教學的大眾化目的,在於使學生獲得解決他們在日常生活和工作中遇到的數學問題能力和可以用數學解決的其它問題。簡言之,就是運用「數學化」的思維習慣去描述、分析、解決問題。
3、從語言層面考慮,應具備運用數學語言進行信息交流的數學素質。數學既是科學的語言,也是日常生活語言。數學語言是以精確、簡約、抽象為特點。它可以使人在表達思想時做到清晰、准確、簡潔,在處理問題時能將問題中的復雜關系表述的條理清楚、結構分明。隨著新技術應用的日益廣泛,利用數學進行交流的需要也日益廣泛。在小學數學教學中利用交流這一手段有助於有意義的數學學習,如果在數學課堂中充滿豐富的交流,可以獲得雙重效益:一是那些積極參加討論的學生,在不同的爭議中將對數學獲得更好的理解;二是如果在數學課堂上給學生聽、說、讀、寫數學的機會,他們將學會數學的交流。
4、從思維層面考慮,應具備數學推理能力。
《數學課程標准》中指出:「推理能力主要表現在:能通過觀察、實驗、歸納、類比等獲得數學猜想,並進一步尋求證據、給出證明或舉出反例;能清晰、有條理地表達自己的思考過程,做到言之有理、落筆有據;在與他人交流的過程中,能運用數學語言合乎邏輯地進行討論與質疑。」根據標准要求,掌握比較完善的推理能力是兒童智力發展的重要環節和主要標志,數學教學中應注意培養和發展兒童的推理能力。結合教學實際,我們認為小學數學中常用的推理有歸納推理、演繹推理和類比推理。
4. 小學數學中有哪些思維能力
一)從數學的特點看:數學具有抽象性和邏輯嚴密性。數學本身是由許多判斷組成的確定體系。這些判斷都是由數學術語和邏輯術語以及相應的符號所表示的語句來表達的,並且藉助邏輯推理由一些判斷形成新的判斷。而這些判斷的總和就構成了數學這門科學。小學數學內容雖然比較簡單,也沒有嚴格的推理論證,但都是經過人們抽象、概括、判斷、推理、論證得出的真正的科學結論,只是不給學生進行嚴密的合乎邏輯的論證。即使這樣,一時一刻也離不開判斷、推理。這就為培養學生的邏輯思維提供了十分有利的條件。
(二)從小學生的思維特點看:小學生正處在從具體形象思維向抽象邏輯思維過渡的階段。特別是中、高年級,學生的抽象思維發生了「飛躍」或「質變」。具體地說,10—11歲學生開始能逐步分出概念的本質特徵,能初步掌握比較科學的定義,能領會概念之間的邏輯關系,也能獨立進行一些簡單的邏輯分析,並進行間接的推理(即由幾個判斷推出新的判斷)。因此可以說,這一階段正是發展學生形式邏輯思維的有利時期。
由此可以看出,小學數學教學大綱中提出培養學生初步的邏輯思維能力,既符合數學學科的特點,又符合小學生的年齡特點。
5. 小學數學要培養學生哪些能力
數學能力的類型及培養小學生數學能力的方法:
(一)觀察能力的培養
觀察能力的培養,用最簡單的一句話說:就是看一看、比一比、想一想。
(二)自主學習能力的培養
培養學生的自主學習能力是素質教育的要求,也是人的全面發展和21世紀的需要。培養自主學習的能力不僅有利於學生今後的學習,而且能優化課堂教學,提高教學效率。但學生的自主學習的能力要以學生為本位,在學生積極參與的學習過程中培養和提高。
(三)課堂交流能力的培養
1.引導學生學會閱讀。2.引導學生學會傾聽。3.引導學生學會對話。4.引導學生學會評價。5.引導學生學會「寫數學」。
(四)比較能力的培養
小學生的比較能力是隨著其年齡和知識的增長,智力水平的發展而提高的。
(五)實踐操作能力的培養
數學是抽象性、邏輯性很強的一門學科,而小學生的思維正處在由具體形象思維為主逐漸向抽象邏輯思維發展的階段。引導小學生在實踐操作的活動過程中學習數學,就是為了在小學生思維的形象性和數學知識的抽象性之間架起過渡的橋梁。
(六)創新能力的培養
亞里士多德曾說過:「想像力是發現、發明等一切創造活動的源泉。」小學時代正是學生處於好奇、好勝、想像力豐富的階段。在教學過程中,我們不能抹殺學生的想像和猜測,而應積極給學生的想像力,適時適度的激活學生的思維,讓他們大膽去設想、假設。越是超越常規的合理想像,越能培養學生的創造性思維,更有利於培養學生的創新能力。
(七)提高解題能力
提高學生的解題能力幫助學生答卷、做題的重要教學手段。因此,教師要精心設計練習題,加強學生的思維訓練,使學生練得精、練得巧、練到點子上。
6. 小學數學能力包括哪些內容
小學數學基礎知識,以算術知識為主(整數、小數、分數、百分數、比和比例),還包括一些代數初步知識(簡易方程)和幾何初步知識(一些簡單幾何形體的認識以及周長、面積、體積、容積的求法),其內容就是這些知識范圍內的概念、定律、性質、法則、公式等。
小學數學概念包括:數的概念、數的運算的概念、幾何形體的概念、數的整除方面的概念。比和比例的概念、量的計量概念等。
運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律,要求在理解的基礎上掌握,並能靈活運用。
運算性質指:一個數加上兩個數的差;一個數減去兩個數的和;一個數減去兩個數的差;一個數乘以兩個數的商;一個數除以兩個數的積;一個數除以兩個數的商;幾個數的和除以一個數等。這部分內容只是用於簡便運算。
運演算法則包括:整數四則運演算法則、小數四則運演算法則、分數四則運演算法則,要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算。
7. 小學生數學學具有哪些
小學生數學學具有:
1、小棒
2、計數器或計數表
3、口算練習卡片
4、圓形口算練習板
5、鍾面和七巧板
小學數學學具的作用
1、小棒:有單根的,也有成捆的,用來學習認數和計算。
2、計數器或計數表:用來學習百以內和萬以內數的讀法和寫法。
3、口算練習卡:利用口算練習卡,讓孩子定時的練習,以提高孩子的計算能力。
4、圓形口算練習板:用來進行口算練習,不僅能提高口算能力,還能激發孩子的學習興趣。
5、鍾面和七巧板:鍾面可以幫助孩子認識時間單位時、分、秒。七巧板可以拼組各種各樣的圖形,通過拼組圖形讓孩子更好的認識圖形的特徵。
(7)小學生的數學能力有哪些擴展閱讀
學具
1、學具,顧名思義就是指可供學生在開展學習活動時直接操作的用具。由於它可以由學生自己動手直接觸摸、擺弄,因此對學具所代表的客觀事物可以較清晰、牢固地掌握。
2、通過學具的運用,不僅有利於把客觀事物的屬性內化為自己的認識,而且也使學生認識事物的內部心理過程得以較清晰地外化為操作的過程。
3、這就便於教師發現學生的思維過程中的不同特點,對過程中暴露出來的思維障礙予以及時指導,以防止或減輕他們在學習過程中可能出現的或已經存在的病理現象。
4、在學具運用中,由於優秀生可以較清晰地展示自己的學習過程,因此有利於班上的學生,特別是有利於差生的學習。
5、常用到學具的學科有數學、物理、化學、自然、美術等。
6、數學學習困難生的轉化是數學教學中的老大難問題,而提高困難生的主體參與意識是實現轉化的關鍵。學具的運用有效的提高了學生的主體參與意識。
7、利用學具可進行有效的基本技能訓練;學具是解決學生學習困難症結的有效工具;利用學具進行考核可使評價產生激勵作用;學具教學活動增強了學生的合作意識。
8、物理教學的特色是以實驗為基礎,實驗教學是物理教學中極為重要的組成部分。近年來發行的物理學具的使用,能夠大面積地調動學生的積極性,有利於學生主動探索知識的發生與發展。同時也有利於教師創造地進行教學。
8. 小學生學數學需要具備哪些能力
j小學學的就是計算和簡單的對題目的理解 還有了解數的規則和范圍
9. 小學生的數學能力包括哪些
小學數學概念包括:數的概念、數的運算的概念、幾何形體的概念、數的整除方面的概念。比和比例的概念、量的計量概念等。 運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律,要求在理解的基礎上掌握,並能靈活運用。 運算性質指:一個數加上兩個數的差;一個數減去兩個數的和;一個數減去兩個數的差;一個數乘以兩個數的商;一個數除以兩個數的積;一個數除以兩個數的商;幾個數的和除以一個數等。這部分內容只是用於簡便運算。 運演算法則包括:整數四則運演算法則、小數四則運演算法則、分數四則運演算法則,要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算。
10. 小學生數學素養有哪些
小學生的數學素養包括數感、符號意識、空間觀念、統計觀念、數學應用意識五種數學意識,數學思維、數學理解、數學交流、解決問題四種數學能力以及數學價值觀的發展。
一、用數學的視角去認識世界。
1、什麼是「數學意識」呢?舉一個例子,假如學生會計算「48÷4」,說明學生具有除法的知識與技能。學生會解「有48個蘋果,平均每人分4個蘋果,可以分給多少人?」,說明學生具有一定的分析問題、解決問題的能力,但都不能說明學生具有數學意識。而在體育課上,48位學生在跳長繩,教師共准備了4根長繩,由此學生能想到「48÷4」這個算式,這就說明學生具有一定的數學意識了。
二、用數學的方式思考問題——數學思維能力的培養。
1、數形結合,發展學生的形象思維。比如,學生掂、稱出1千克蘋果、麵粉等後,讓學生數一數、看一看,就能發現4~6個蘋果約重1千克,2瓶礦泉水約重1千克,1千克黃豆(約4000粒)有幾捧。讓學生將抽象的1千克數學概念與具體事物的數量、體積聯系起來,能幫助學生有效建立1千克的質量概念,化抽象的概念為可以看得見的數學事實。
三、用數學的方法解決問題。
1、根據小學生的年齡特點,應把畫圖、列表、猜想與驗證、動手操作等作為常用策略在教學中加以指導。當遇到如「小軍去游泳池游泳,在泳道內遊了兩個來回,共遊了100米,這個游泳池的泳道有多長?」這樣的問題,可以讓學生用手在桌面上模擬一下真實情境,理解「兩個來回」實際上就是4個泳道的長。