❶ 高中數學的基本思想方法有哪些
1、函數方程思想
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組)。
然後通過解方程(組)或不等式(組)來使問題獲解。有時,還需要函數與方程的互相轉化、接軌,達到解決問題的目的。
笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程。
求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。
函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題。
經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。在解決問題中。
善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系。
構造出函數原型。另外,方程問題、不等式問題、集合問題、數列問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。
2、數形結合思想
「數無形,少直觀,形無數,難入微」,利用「數形結合」可使所要研究的問題化難為易,化繁為簡。把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答,這種方法在解析幾何里最常用。
例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。
3、分類討論思想
當一個問題因為某種量或圖形的情況不同而有可能引起問題的結果不同時,需要對這個量或圖形的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要分類討論a的取值情況。
4、方程思想
當一個問題可能與某個方程建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。
5、整體思想
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。
整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用,整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。
6、化歸思想
在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。三角函數,幾何變換,因式分解,解析幾何,微積分,乃至古代數學的尺規作圖等數學理論無不滲透著轉化的思想。
常見的轉化方式有:一般 特殊轉化,等價轉化,復雜 簡單轉化,數形轉化,構造轉化,聯想轉化,類比轉化等。
轉化思想亦可在狹義上稱為化歸思想。化歸思想就是將待解決的或者難以解決的問題A經過某種轉化手段,轉化為有固定解決模式的或者容易解決的問題B,通過解決問題B來解決問題A的方法。
7、隱含條件思想
沒有明文表述出來,但是根據已有的明文表述可以推斷出來的條件,或者是沒有明文表述,但是該條件是一個常規或者真理。例如一個等腰三角形,一條線段垂直於底邊,那麼這條線段所在的直線也平分底邊和頂角。
8、類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。
9、建模思想
為了更具科學性,邏輯性,客觀性和可重復性地描述一個實際現象,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。
使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
10、歸納推理思想
由某類事物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者由個別事實概括出一般結論的推理稱為歸納推理(簡稱歸納),簡言之,歸納推理是由部分到整體,由個別到一般的推理。
另外,還有概率統計思想等數學思想,例如概率統計思想是指通過概率統計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。另外,還可以用概率方法解決一些面積問題。
❷ 高中數學教學方法有哪些
上課認真聽講,課後及時復習並做題鞏固
❸ 高中數學包括哪些內容
高中數學怎麼學?高中數學難學嗎?
數學這個科目,不管是對於文科學生還是對於理科學生.都是比較重要的,因為他是三大主課之一,它占的分值比較大.要是數學學不好,你可能會影響到物理化學的學習,因為那些學科都是要通過計算.然而,這些計算也都是在數學裡面.高中數學怎麼學?有哪些好的方法?
老師讓孩子上黑板做題
數學擔負著培養孩子的運算能力,還有孩子應用知識的能力.高中數學怎樣學?還是要看學生對數學的理解程度.學生要有自己的學習方法,你不光要掌握老師上課的內容,在下課之後還要及時鞏固,加深.
❹ 高中數學的學習方法有哪些
高中數學學習方法經驗
在新的高考制度「3+x+綜合」普遍吹散全國大地之時,代表人們基本素質的「3」科中,數學是最能體現一個人的思維能力,判斷能力、反應敏捷能力和聰明程度的學科。數學直接影響著國民的基本素質和生活質量,良好的數學修養將為人的一生可持續發展奠定基礎,高中階段則應可能充分反映學習者對數學的不同需求,使每個學生都能學習適合他們自己的數學。
一、初中數學與高中數學的差異。
1、知識差異。初中數學知識少、淺、難度容易、知識面窄。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是「0—180」范圍內的,但實際當中也有720和「—30」等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習「排列組合」知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法?②四人進行乒乓球雙打比賽,有幾種比賽場次?高中將學習統計這些排列的數學方法。初中數學知識中對一個負數開平方無意義,但在高中規定了i2=-1,就使-1的平方根為±i,即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以後的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課後老師布置作業,然後通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多,每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握後再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,要教師全部訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去這一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其後半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由於學習數學知識的范圍小,知識層次低,知識面窄,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那麼就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變數的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們採用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變數的分析,探索出分析、解決問題的思路和解題所用的數學思想。
二、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、有良好的學習興趣
兩千多年前孔子說過:「知之者不如好之者,好之者不如樂之者。」意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。「好」和「樂」就是願意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的「認識」過程,這自然會變為立志學好數學,成為數學學習的成功者。那麼如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什麼要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸於現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會准確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、 有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想像能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,並在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計「智力課」和「智力問題」比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
三、其它注意事項
1、 注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握後再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是採用蘊含披露的方式將數學思想溶於數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數;②從數軸角度理解:什麼樣的兩點表示數是互為相反數的(關於原點對稱的點);③從絕對值角度理解:絕對值_______的兩個數是互為相反數的;④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
四、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果 朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做「小老師」,形成數學學習「互助組」。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學後忘。
7、學會總結歸類。可:①從數學思想分類;②從解題方法歸類;③從知識應用上分類。
❺ 高中數學有哪些學習方法與技巧
這~~ 高中三年各個年級各階段肯定是不同的,學新知識階段,高三備考階段,備考一二三輪復習階段。這要看你自己處於哪個階段了。前期《教材完全解讀》里有一本小冊子,是講高中入學指南的,裡面有一些注意事項呀、學習方法呀之類的,從裡面挑出數學的一部分,你可以參考著看一下:
初中數學和高中數學的區別
1、高中數學內容抽象性、理論性更強,尤其是在高一代數中,首先碰到的就是理論性很強的函數,使一些初中數學很好的學生難以適應。
2、高中數學的思維方法向理性層次躍進,初中數學要簡單些,按一定步驟就可解決,而高中數學的解題更復雜,要求學生多角度多方面思考。
3、知識內容有所增加,學生在同樣時間內掌握知識的工作量要明顯增多。
【應對策略】
1、別有依賴心理
初中數學學習中,教師會列出中考各類型題目進行反復練習,學生易養成依賴老師、套用模式的習慣。到高中這種模式就完全轉變了,況且初中數學家長還可以稍加輔導,但到了高中,大多數家長知識水平已無法跟上。這時候,能靠的只有自己。
2、不能思想鬆懈
如果用初中方法學習高中數學,沒有在思想上重視,方法上改變,即使是拔尖的學生也很容易跟不上。高一是高中三年中最關鍵、打基礎的階段,一旦跟不上就很難趕上。所以,高中學習,一天都不能鬆懈。
3、暑假裡做些准備
由於高中數學與初中數學比較變化很大,學生在暑假裡做好休整的同時,還是需要做一些過渡性的調適。比如整理一下自己的知識儲備,初中沒有解決的問題要查漏補缺;對高一的教材進行預習,適當做一些基礎的題但不提倡大量做題。
❻ 請問高中數學包括哪些內容
高中數學主要是代數,三角,幾何三個部分.內容相互獨立但是解題時常互相提供方法,等高三你就知道了.
必修的:
代數部分有:
1 集合與簡易邏輯.其實就是集合,命題,充要條件三點,很淺顯高考也不會單出這類的題
2 函數.先是對於函數的描述,有映射定義域對應法則植域;然後是性質,三個,單調性奇偶性周期性;最後是指數函數還有對數函數,是兩個基本的函數,要研究他們的性質和圖象
3 三角.三角其實就是個工具,比較煩人,公式背下來再多練練用的滾瓜爛熟就行了
4 幾何.也就是平面解析幾何,用坐標法定量的研究平面幾何問題.學幾個定義,然後是直線的方程,圓的方程,圓錐曲線方程.
高考的重點一般在 常用函數 常用雙曲線+直線 數列 三角
二項式定理 立體幾何 排列組合加概率等其他一些知識是比較小的部分
重要的是基礎 高一的話上課的基本解題方法一定要熟練掌握 並且不能忘記 到了高三再練習就很麻煩了 還有不要忽視概念 往往很多題目是考概念的
難度方面要視文理科而定 但是70%題目肯定用基本知識就能做的 20%需要結合各種知識並且動腦 真正有難度的題目只有10%
高中數學學習方法談
進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。
一、 高中數學與初中數學特點的變化
1、數學語言在抽象程度上突變
初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。
2、思維方法向理性層次躍遷
高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。
3、知識內容的整體數量劇增
高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。
4、知識的獨立性大
初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。
二、如何學好高中數學
1、養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成 「以我為主」的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的措施
² 記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中
拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
² 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再
犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
² 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化
或半自動化的熟練程度。
² 經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,
使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。
² 閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課
外題,加大自學力度,拓展自己的知識面。
² 及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏
固,消滅前學後忘。
² 學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解
題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。
² 經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學
思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。
² 無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,這是學好數學的重要問題。
❼ 怎麼學好高中數學的方法有哪些
學好高中數學的方法有:
1、有良好的學習興趣
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
2、建立良好的學習數學習慣
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。
高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,把教師所傳授的知識翻譯成為自己的特殊語言,記憶在自己的腦海中。另外要保證每天有自學時間,以便加寬知識面和培養自己再學習能力。
3、有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。
❽ 學高中數學方法有哪些
這~~ 高中三年各個年級各階段肯定是不同的,學新知識階段,高三備考階段,備考一二三輪復習階段。這要看你自己處於哪個階段了。前期《教材完全解讀》里有一本小冊子,是講高中入學指南的,裡面有一些注意事項呀、學習方法呀之類的,從裡面挑出數學的一部分,你可以參考著看一下:初中數學和高中數學的區別 1、高中數學內容抽象性、理論性更強,尤其是在高一代數中,首先碰到的就是理論性很強的函數,使一些初中數學很好的學生難以適應。 2、高中數學的思維方法向理性層次躍進,初中數學要簡單些,按一定步驟就可解決,而高中數學的解題更復雜,要求學生多角度多方面思考。 3、知識內容有所增加,學生在同樣時間內掌握知識的工作量要明顯增多。【應對策略】 1、別有依賴心理初中數學學習中,教師會列出中考各類型題目進行反復練習,學生易養成依賴老師、套用模式的習慣。到高中這種模式就完全轉變了,況且初中數學家長還可以稍加輔導,但到了高中,大多數家長知識水平已無法跟上。這時候,能靠的只有自己。 2、不能思想鬆懈如果用初中方法學習高中數學,沒有在思想上重視,方法上改變,即使是拔尖的學生也很容易跟不上。高一是高中三年中最關鍵、打基礎的階段,一旦跟不上就很難趕上。所以,高中學習,一天都不能鬆懈。 3、暑假裡做些准備由於高中數學與初中數學比較變化很大,學生在暑假裡做好休整的同時,還是需要做一些過渡性的調適。比如整理一下自己的知識儲備,初中沒有解決的問題要查漏補缺;對高一的教材進行預習,適當做一些基礎的題但不提倡大量做題。
❾ 高中數學的主要內容有哪些
集合。函數。立體幾何。概率。三角。數列。。。。