㈠ 高二數學中關於排列組合的公式 變形公式 計算公式有哪些 謝謝~
Permutation
Formula
(排列公式):
Pn(下標)m(上標)=(n!)/((n-m)!)=n(n-1)(n-2)...(n-m+1)
Combination
Formula
(組合公式):
Cn(下標)m(上標)=(n!)/((m!(n-m)!))=
(n(n-1)(n-2)...(n-m+1))/(1x2x3...m)
公式P是指排列,從N個元素取m個進行排列(即排序)。
公式C是指組合,從N個元素取m個,不進行排列(即不排序)。
C-組合數
;P-排列數
;m參與選擇的元素個數
n-元素的總個數
;!-階乘
,如5!=5*4*3*2*1=120
㈡ 關於數學排列組合,A什麼的C什麼的到底怎麼算舉個例子。。
A開頭的叫排列,C開頭的叫組合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
註:當且僅當兩個排列的元素完全相同,且元素的排列順序也相同,則兩個排列相同。例如,abc與abd的元素不完全相同,它們是不同的排列;又如abc與acb,雖然元素完全相同,但元素的排列順序不同,它們也是不同的排列。
㈢ 排列a的演算法是什麼
計算方法:
(1)排列數公式
排列用符號A(n,m)表示,m≦n。
計算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外規定0!=1,n!表示n(n-1)(n-2)…1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
(2)組合數公式
組合用符號C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
兩個常用的排列基本計數原理及應用:
1、加法原理和分類計數法:
每一類中的每一種方法都可以獨立地完成此任務。兩類不同辦法中的具體方法,互不相同(即分類不重)。完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
2、乘法原理和分步計數法:
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務。各步計數相互獨立。只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。
㈣ 全排列計算公式是什麼
公式:全排列數f(n)=n!(定義0!=1)。
從n個不同元素中任取m(m≤n)個元素,按照一定的順序排列起來,叫做從n個不同元素中取出m個元素的一個排列。當m=n時所有的排列情況叫全排列。
鄰位對換法
遞減進位制數法的中介數進位不頻繁,求下一個排列在不進位的情況下很容易。
這就啟發我們,能不能設計一種演算法,下一個排列總是上一個排列某相鄰兩位對換得到的。
遞減進位制數字的換位是單向的,從右向左,而鄰位對換法的換位是雙向的。 這個演算法可描述如下:
對1—n-1的每一個偶排列,n從右到左插入n個空檔(包括兩端),生成1—n的n個排列。
對1—n-1的每一個奇排列,n從左到右插入n個空檔,生成1—n的n個排列。
對[2,n]的每個數字都是如此。
㈤ 排列組合的公式
排列組合計算公式如下:
1、從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示。
排列就是指從給定個數的元素中取出指定個數的元素進行排序。組合則是指從給定個數的元素中僅僅取出指定個數的元素,不考慮排序。
排列組合的中心問題是研究給定要求的排列和組合可能出現的情況總數。 排列組合與古典概率論關系密切。
(5)數學排列公式怎麼算擴展閱讀
排列組合的發展歷程:
根據組合學研究與發展的現狀,它可以分為如下五個分支:經典組合學、組合設計、組合序、圖與超圖和組合多面形與最優化。
由於組合學所涉及的范圍觸及到幾乎所有數學分支,也許和數學本身一樣不大可能建立一種統一的理論。
然而,如何在上述的五個分支的基礎上建立一些統一的理論,或者從組合學中獨立出來形成數學的一些新分支將是對21世紀數學家們提出的一個新的挑戰。
㈥ 數學的排列組合公式C(n,m)的計算
公式中,前面列出三項是要讓人看出規律,真正的項數未必有這么多。錯誤是最後多寫了(5-3+1),也就是前面寫了 (5-2)後,後面就沒有了,因為它就是最後一項 5-3+1 。
排列a與組合c計算方法
計算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)。
組合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!
例如A(4,2)=4!/2!=4*3=12。
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。
排列組合中的基本計數原理
(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。
(2)第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2,……,第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合A1UA2U…UAn。
(3)分類的要求 :每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
㈦ 排列的計算公式是什麼
計算公式如下:
公式A是排列公式,從N個元素取M個進行排列(即排序)。
排列數公式就是從n個不同元素中,任取m(m≤n)個元素(被取出的元素各不相同),按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。排列與元素的順序有關,組合與順序無關,加法原理和乘法原理是排列和組合的基礎。
兩個常用的排列基本計數原理及應用:
1、加法原理和分類計數法:
每一類中的每一種方法都可以獨立地完成此任務,兩類不同辦法中的具體方法,互不相同(即分類不重),完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
2、乘法原理和分步計數法:
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務,各步計數相互獨立。只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。